In this paper an original and exhaustive mathematical modelling of air impingement drying systems for the production of tissue paper in the Yankee-hoods configurations is reported, which offers the possibility to optimize its energy performance. The model takes into account many detailed operative parameters of the overall drying process with the aim to execute its energy and mass balance and to evaluate its energy performances. The validity of the mathematical model has been assessed by comparison with actual data from an existing tissue paper mill. Finally, the energy performances of two different layouts of the air system have been evaluated and compared. Changing the operative parameters of the drying process, such as air jet temperature and speed and moisture content of the extraction air, it is possible to obtain the same paper production with an energy saving of about 4.5%. In average, the layout with two parallel air circuits assure an energy saving of about 1% with respect to the layout with a single air circuit.

Mathematical modelling and energy performance assessment of air impingement drying systems for the production of tissue paper

DI MARCO, PAOLO;FRIGO, STEFANO;GABBRIELLI, ROBERTO;
2016-01-01

Abstract

In this paper an original and exhaustive mathematical modelling of air impingement drying systems for the production of tissue paper in the Yankee-hoods configurations is reported, which offers the possibility to optimize its energy performance. The model takes into account many detailed operative parameters of the overall drying process with the aim to execute its energy and mass balance and to evaluate its energy performances. The validity of the mathematical model has been assessed by comparison with actual data from an existing tissue paper mill. Finally, the energy performances of two different layouts of the air system have been evaluated and compared. Changing the operative parameters of the drying process, such as air jet temperature and speed and moisture content of the extraction air, it is possible to obtain the same paper production with an energy saving of about 4.5%. In average, the layout with two parallel air circuits assure an energy saving of about 1% with respect to the layout with a single air circuit.
2016
DI MARCO, Paolo; Frigo, Stefano; Gabbrielli, Roberto; Pecchia, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/802963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact