The low thermal conductivity of silicon nanowires and nanostructures opens interesting opportunities for energy harvesting through the direct, high-efficiency, conversion of waste heat into electrical power. We present solutions for the fabrication and interconnection of a high number of suspended silicon nanostructures, within CMOS compatible top-down processes. Mechanical stability and thermoelectric properties of these devices will be analysed by means of finite element simulations, and opportunities for practical applications will be discussed. It will be shown that, despite the reduced dimensions needed for a strong suppression of thermal conductivity, a considerable amount of electrical power can be delivered to the load as a result of the presence of many interconnected devices on the same chip.

High-power thermoelectric generators based on nanostructured silicon

PENNELLI, GIOVANNI;MACUCCI, MASSIMO
2016-01-01

Abstract

The low thermal conductivity of silicon nanowires and nanostructures opens interesting opportunities for energy harvesting through the direct, high-efficiency, conversion of waste heat into electrical power. We present solutions for the fabrication and interconnection of a high number of suspended silicon nanostructures, within CMOS compatible top-down processes. Mechanical stability and thermoelectric properties of these devices will be analysed by means of finite element simulations, and opportunities for practical applications will be discussed. It will be shown that, despite the reduced dimensions needed for a strong suppression of thermal conductivity, a considerable amount of electrical power can be delivered to the load as a result of the presence of many interconnected devices on the same chip.
2016
Pennelli, Giovanni; Macucci, Massimo
File in questo prodotto:
File Dimensione Formato  
sst_31_5_054001.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
genor_submitted.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/803814
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact