We analyse the problem of a simply supported steel beam subjected to uniformly distributed load, strengthened with a pre-stressed fibre-reinforced polymer (FRP) laminate. We assume that the laminate is first put into tension, then bonded to the beam bottom surface, and finally fixed at both its ends by suitable connections. The beam and laminate are modelled according to classical beam theory. The adhesive is modelled as a cohesive interface with a piecewise linear constitutive law defined over three intervals (elastic response, softening response, debonding). The model is described by a set of differential equations with suitable boundary conditions. An analytical solution to the problem is determined, including explicit expressions for the internal forces and interfacial stresses. As an application, we consider the standard IPE series for the steel beam and the Sika® CarboDur® system for the adhesive and laminate. For each considered cross section, we first carry out a preliminary design of the unstrengthened steel beam. Then, we imagine to apply the FRP strengthening and calculate the loads corresponding to the elastic limit states in the steel beam, adhesive, and laminate. Lastly, we take into account the ultimate limit state corresponding to the plasticisation of the mid-span steel cross section and evaluate the increased load bearing capacity of the strengthened beam.

Evaluation of the increased load bearing capacity of steel beams strengthened with pre-stressed FRP laminates

BENNATI, STEFANO;VALVO, PAOLO SEBASTIANO
2016-01-01

Abstract

We analyse the problem of a simply supported steel beam subjected to uniformly distributed load, strengthened with a pre-stressed fibre-reinforced polymer (FRP) laminate. We assume that the laminate is first put into tension, then bonded to the beam bottom surface, and finally fixed at both its ends by suitable connections. The beam and laminate are modelled according to classical beam theory. The adhesive is modelled as a cohesive interface with a piecewise linear constitutive law defined over three intervals (elastic response, softening response, debonding). The model is described by a set of differential equations with suitable boundary conditions. An analytical solution to the problem is determined, including explicit expressions for the internal forces and interfacial stresses. As an application, we consider the standard IPE series for the steel beam and the Sika® CarboDur® system for the adhesive and laminate. For each considered cross section, we first carry out a preliminary design of the unstrengthened steel beam. Then, we imagine to apply the FRP strengthening and calculate the loads corresponding to the elastic limit states in the steel beam, adhesive, and laminate. Lastly, we take into account the ultimate limit state corresponding to the plasticisation of the mid-span steel cross section and evaluate the increased load bearing capacity of the strengthened beam.
2016
Bennati, Stefano; Colonna, D.; Valvo, PAOLO SEBASTIANO
File in questo prodotto:
File Dimensione Formato  
1809-6488-1-SM.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 351.04 kB
Formato Adobe PDF
351.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/806574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact