The aim of this study is to augment the uncertain dynamics of the helicopter in order to resemble the dynamics of a new kind of vehicle, the so called Personal Aerial Vehicle. To achieve this goal a two step procedure is proposed. First, the helicopter model dynamics is augmented with a PID-based dynamic controller. Such controller implements a model following on the nominal helicopter model without uncertainties. Then, L1 adaptive controller is designed to restore the nominal responses of the augmented helicopter when variations in the identified parameters are considered. The performance of the adaptive controller is evaluated via Montecarlo simulations. The results show that the application of the adaptive controller to the augmented helicopter dynamics can significantly reduce the effects of uncertainty due to the identification of the helicopter model. For implementation reasons the adaptive controller was applied to a subset of the output of the system. However, the under actuation typical of helicopters makes the tracking of the nominal responses good also on the other outputs.
L1-based Model Following Control of and Identified Helicopter Model in Hover
POLLINI, LORENZO;INNOCENTI, MARIO
2016-01-01
Abstract
The aim of this study is to augment the uncertain dynamics of the helicopter in order to resemble the dynamics of a new kind of vehicle, the so called Personal Aerial Vehicle. To achieve this goal a two step procedure is proposed. First, the helicopter model dynamics is augmented with a PID-based dynamic controller. Such controller implements a model following on the nominal helicopter model without uncertainties. Then, L1 adaptive controller is designed to restore the nominal responses of the augmented helicopter when variations in the identified parameters are considered. The performance of the adaptive controller is evaluated via Montecarlo simulations. The results show that the application of the adaptive controller to the augmented helicopter dynamics can significantly reduce the effects of uncertainty due to the identification of the helicopter model. For implementation reasons the adaptive controller was applied to a subset of the output of the system. However, the under actuation typical of helicopters makes the tracking of the nominal responses good also on the other outputs.File | Dimensione | Formato | |
---|---|---|---|
AHS72.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
482.6 kB
Formato
Adobe PDF
|
482.6 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.