The paper deals with the gap function approach for equilibrium problems with locally Lipschitz data. The gap function inherits the locally Lipschitz continuity of the data. Hence, the connections between its generalized directional derivatives, monotonicity conditions on the equilibrium bifunction and descent properties, can be analyzed. In turn, this analysis leads to devise two descent methods. Finally, the results of preliminary numerical tests are reported.
Optimization Tools for Solving Equilibrium Problems with Nonsmooth Data
BIGI, GIANCARLO;PAPPALARDO, MASSIMO;PASSACANTANDO, MAURO
2016-01-01
Abstract
The paper deals with the gap function approach for equilibrium problems with locally Lipschitz data. The gap function inherits the locally Lipschitz continuity of the data. Hence, the connections between its generalized directional derivatives, monotonicity conditions on the equilibrium bifunction and descent properties, can be analyzed. In turn, this analysis leads to devise two descent methods. Finally, the results of preliminary numerical tests are reported.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Optimization_Tools_for_EPs_Nonsmooth_Data_arpi.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
279.3 kB
Formato
Adobe PDF
|
279.3 kB | Adobe PDF | Visualizza/Apri |
NEP-revision.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
300.87 kB
Formato
Adobe PDF
|
300.87 kB | Adobe PDF | Visualizza/Apri |
jota16.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
501.09 kB
Formato
Adobe PDF
|
501.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.