We discuss different notions of continuous solutions to the balance law ∂_tu + ∂_x (f(u))=g, g bounded, f in C^2 extending previous works relative to the flux f(u)=u^2. We establish the equivalence among distributional solutions and a suitable notion of Lagrangian solutions for general smooth fluxes. We eventually find that continuous solutions are Kruzkov iso-entropy solutions, which yields uniqueness for the Cauchy problem. We also reduce the ODE on any characteristics under the sharp assumption that the set of inflection points of the flux f is negligible. The correspondence of the source terms in the two settings is a matter of the companion work [2], where we include counterexamples when the negligibility on inflection points fails.

Eulerian, Lagrangian and broad continuous solutions to a balance law with non-convex flux I

ALBERTI, GIOVANNI;
2016-01-01

Abstract

We discuss different notions of continuous solutions to the balance law ∂_tu + ∂_x (f(u))=g, g bounded, f in C^2 extending previous works relative to the flux f(u)=u^2. We establish the equivalence among distributional solutions and a suitable notion of Lagrangian solutions for general smooth fluxes. We eventually find that continuous solutions are Kruzkov iso-entropy solutions, which yields uniqueness for the Cauchy problem. We also reduce the ODE on any characteristics under the sharp assumption that the set of inflection points of the flux f is negligible. The correspondence of the source terms in the two settings is a matter of the companion work [2], where we include counterexamples when the negligibility on inflection points fails.
2016
Alberti, Giovanni; Bianchini, Stefano; Caravenna, Laura
File in questo prodotto:
File Dimensione Formato  
ABC1-published.pdf

solo utenti autorizzati

Descrizione: versione pubblicata dell'articolo
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ABC1-revised.pdf

Open Access dal 16/10/2018

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/809146
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact