The synthesis of eco-friendly nanoparticles is evergreen branch of nanoscience with a growing number of biomedical implications. In this study, we investigated the synthesis of polydisperse and stable silver nanoparticles (AgNP) using a cheap leaf extract of Malva sylvestris (Malvaceae). Bio-reduced AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The acute toxicity of M. sylvestris leaf extract and green-synthesized AgNP was evaluated against larvae of the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the filariasis vector Culex quinquefasciatus. Compared to the leaf aqueous extract, AgNP showed higher toxicity against A. stephensi, A. aegypti, and C. quinquefasciatus with LC50 values of 10.33, 11.23, and 12.19 μg/mL, respectively. Green-synthesized AgNP were found safer to non-target organisms Diplonychus indicus and Gambusia affinis, with respective LC50 values ranging from 813.16 to 1044.52 μg/mL. Overall, this research firstly shed light on the mosquitocidal potential of M. sylvestris, a potential bio-resource for rapid, cheap and effective synthesis of polydisperse and highly stable silver nanocrystals.

One-step synthesis of polydispersed silver nanocrystals using Malva sylvestris: an eco-friendly mosquito larvicide with negligible impact on non-target aquatic organisms

BENELLI, GIOVANNI
2016

Abstract

The synthesis of eco-friendly nanoparticles is evergreen branch of nanoscience with a growing number of biomedical implications. In this study, we investigated the synthesis of polydisperse and stable silver nanoparticles (AgNP) using a cheap leaf extract of Malva sylvestris (Malvaceae). Bio-reduced AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The acute toxicity of M. sylvestris leaf extract and green-synthesized AgNP was evaluated against larvae of the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the filariasis vector Culex quinquefasciatus. Compared to the leaf aqueous extract, AgNP showed higher toxicity against A. stephensi, A. aegypti, and C. quinquefasciatus with LC50 values of 10.33, 11.23, and 12.19 μg/mL, respectively. Green-synthesized AgNP were found safer to non-target organisms Diplonychus indicus and Gambusia affinis, with respective LC50 values ranging from 813.16 to 1044.52 μg/mL. Overall, this research firstly shed light on the mosquitocidal potential of M. sylvestris, a potential bio-resource for rapid, cheap and effective synthesis of polydisperse and highly stable silver nanocrystals.
Govindarajan, Marimuthu; Hoti, S. L.; Rajeswary, Mohan; Benelli, Giovanni
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/809693
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 7
social impact