We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of [-1.18,+1.00]×10-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7×10-25 near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 5.5×10-24. Both cases refer to all sky locations and entire range of frequency derivative values.

Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data

ALLOCCA, ANNALISA;BASTI, ANDREA;BOSCHI, VALERIO;CERRETANI, GIOVANNI;DEL POZZO, WALTER;DI LIETO, ALBERTO;FERRANTE, ISIDORO;FIDECARO, FRANCESCO;GONZALEZ CASTRO, JOSE MARIA;PASSAQUIETI, ROBERTO;PATRICELLI, BARBARA;POGGIANI, ROSA;RAZZANO, MASSIMILIANO;TONELLI, MAURO;
2016-01-01

Abstract

We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of [-1.18,+1.00]×10-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7×10-25 near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 5.5×10-24. Both cases refer to all sky locations and entire range of frequency derivative values.
2016
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.;...espandi
File in questo prodotto:
File Dimensione Formato  
DelPozzo_814840.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 708.71 kB
Formato Adobe PDF
708.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/814840
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 31
social impact