Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CINECA IRIS Institutional Research Information System
We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations - including sources with two independent, precessing spins - we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed using previously estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz [64 M-82 M], mass ratio 1/q=m2/m1 [0.6,1], and effective aligned spin χeff [-0.3,0.2], where χeff=(S1/m1+S2/m2)·L/M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1,2 up to at least 0.8, with random orientations. Further detailed follow-up calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole's redshifted mass is consistent with Mf,z in the range 64.0 M-73.5 M and the final black hole's dimensionless spin parameter is consistent with af=0.62-0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)].
Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence
Abbott, B. P;Abbott, R.;Abbott, T. D.;Abernathy, M. R.;Acernese, F.;Ackley, K.;Adams, C.;Adams, T.;Addesso, P.;Adhikari, R. X.;Adya, V. B.;Affeldt, C.;Agathos, M.;Agatsuma, K.;Aggarwal, N.;Aguiar, O. D.;Aiello, L.;Ain, A.;Ajith, P.;Allen, B.;ALLOCCA, ANNALISA;Altin, P. A.;Anderson, S. B.;Anderson, W. G.;Arai, K.;Araya, M. C.;Arceneaux, C. C.;Areeda, J. S.;Arnaud, N.;Arun, K. G.;Ascenzi, S.;Ashton, G.;Ast, M.;Aston, S. M.;Astone, P.;Aufmuth, P.;Aulbert, C.;Babak, S.;Bacon, P.;Bader, M. K. M.;Baker, P. T.;Baldaccini, F.;Ballardin, G.;Ballmer, S. W.;Barayoga, J. C.;Barclay, S. E.;Barish, B. C.;Barker, D.;Barone, F.;Barr, B.;Barsotti, L.;Barsuglia, M.;Barta, D.;Bartlett, J.;Bartos, I.;Bassiri, R.;BASTI, ANDREA;Batch, J. C.;Baune, C.;Bavigadda, V.;Bazzan, M.;Bejger, M.;Bell, A. S.;Berger, B. K.;Bergmann, G.;Berry, C. P. L.;Bersanetti, D.;Bertolini, A.;Betzwieser, J.;Bhagwat, S.;Bhandare, R.;Bilenko, I. A.;Billingsley, G.;Birch, J.;Birney, R.;Biscans, S.;Bisht, A.;Bitossi, M.;Biwer, C.;Bizouard, M. A.;Blackburn, J. K.;Blair, C. D.;Blair, D. G.;Blair, R. M.;Bloemen, S.;Bock, O.;Boer, M.;Bogaert, G.;Bogan, C.;Bohe, A.;Bond, C.;Bondu, F.;Bonnand, R.;Boom, B. A.;Bork, R.;BOSCHI, VALERIO;Bose, S.;Bouffanais, Y.;Bozzi, A.;Bradaschia, C.;Brady, P. R.;Braginsky, V. B.;Branchesi, M.;Brau, J. E.;Briant, T.;Brillet, A.;Brinkmann, M.;Brisson, V.;Brockill, P.;Broida, J. E.;Brooks, A. F.;Brown, D. A.;Brown, D. D.;Brown, N. M.;Brunett, S.;Buchanan, C. C.;Buikema, A.;Bulik, T.;Bulten, H. J.;Buonanno, A.;Buskulic, D.;Buy, C.;Byer, R. L.;Cabero, M.;Cadonati, L.;Cagnoli, G.;Cahillane, C.;Calderón Bustillo, J.;Callister, T.;Calloni, E.;Camp, J. B.;Cannon, K. C.;Cao, J.;Capano, C. D.;Capocasa, E.;Carbognani, F.;Caride, S.;Casanueva Diaz, J.;Casentini, C.;Caudill, S.;Cavaglià, M.;Cavalier, F.;Cavalieri, R.;Cella, G.;Cepeda, C. B.;Cerboni Baiardi, L.;CERRETANI, GIOVANNI;Cesarini, E.;Chamberlin, S. J.;Chan, M.;Chao, S.;Charlton, P.;Chassande Mottin, E.;Cheeseboro, B. D.;Chen, H. Y.;Chen, Y.;Cheng, C.;Chincarini, A.;Chiummo, A.;Cho, H. S.;Cho, M.;Chow, J. H.;Christensen, N.;Chu, Q.;Chua, S.;Chung, S.;Ciani, G.;Clara, F.;Clark, J. A.;Cleva, F.;Coccia, E.;Cohadon, P. F.;Colla, A.;Collette, C. G.;Cominsky, L.;Constancio, M.;Conte, A.;Conti, L.;Cook, D.;Corbitt, T. R.;Cornish, N.;Corsi, A.;Cortese, S.;Costa, C. A.;Coughlin, M. W.;Coughlin, S. B.;Coulon, J. P.;Countryman, S. T.;Couvares, P.;Cowan, E. E.;Coward, D. M.;Cowart, M. J.;Coyne, D. C.;Coyne, R.;Craig, K.;Creighton, J. D. E.;Cripe, J.;Crowder, S. G.;Cumming, A.;Cunningham, L.;Cuoco, E.;Dal Canton, T.;Danilishin, S. L.;D'Antonio, S.;Danzmann, K.;Darman, N. S.;Dasgupta, A.;Da Silva Costa, C. F.;Dattilo, V.;Dave, I.;Davier, M.;Davies, G. S.;Daw, E. J.;Day, R.;De, S.;Debra, D.;Debreczeni, G.;Degallaix, J.;De Laurentis, M.;Deléglise, S.;DEL POZZO, WALTER;Denker, T.;Dent, T.;Dergachev, V.;De Rosa, R.;Derosa, R. T.;Desalvo, R.;Devine, R. C.;Dhurandhar, S.;Díaz, M. C.;Di Fiore, L.;Di Giovanni, M.;Di Girolamo, T.;DI LIETO, ALBERTO;Di Pace, S.;Di Palma, I.;Di Virgilio, A.;Dolique, V.;Donovan, F.;Dooley, K. L.;Doravari, S.;Douglas, R.;Downes, T. P.;Drago, M.;Drever, R. W. P.;Driggers, J. C.;Ducrot, M.;Dwyer, S. E.;Edo, T. B.;Edwards, M. C.;Effler, A.;Eggenstein, H. B.;Ehrens, P.;Eichholz, J.;Eikenberry, S. S.;Engels, W.;Essick, R. C.;Etzel, T.;Evans, M.;Evans, T. M.;Everett, R.;Factourovich, M.;Fafone, V.;Fair, H.;Fan, X.;Fang, Q.;Farinon, S.;Farr, B.;Farr, W. M.;Favata, M.;Fays, M.;Fehrmann, H.;Fejer, M. M.;Fenyvesi, E.;FERRANTE, ISIDORO;Ferreira, E. C.;Ferrini, F.;FIDECARO, FRANCESCO;Fiori, I.;Fiorucci, D.;Fisher, R. P.;Flaminio, R.;Fletcher, M.;Fournier, J. D.;Frasca, S.;Frasconi, F.;Frei, Z.;Freise, A.;Frey, R.;Frey, V.;Fritschel, P.;Frolov, V. V.;Fulda, P.;Fyffe, M.;Gabbard, H. A. G.;Gair, J. R.;Gammaitoni, L.;Gaonkar, S. G.;Garufi, F.;Gaur, G.;Gehrels, N.;Gemme, G.;Geng, P.;Genin, E.;Gennai, A.;George, J.;Gergely, L.;Germain, V.;Ghosh, Abhirup;Ghosh, Archisman;Ghosh, S.;Giaime, J. A.;Giardina, K. D.;Giazotto, A.;Gill, K.;Glaefke, A.;Goetz, E.;Goetz, R.;Gondan, L.;González, G.;GONZALEZ CASTRO, JOSE MARIA;Gopakumar, A.;Gordon, N. A.;Gorodetsky, M. L.;Gossan, S. E.;Gosselin, M.;Gouaty, R.;Grado, A.;Graef, C.;Graff, P. B.;Granata, M.;Grant, A.;Gras, S.;Gray, C.;Greco, G.;Green, A. C.;Groot, P.;Grote, H.;Grunewald, S.;Guidi, G. M.;Guo, X.;Gupta, A.;Gupta, M. K.;Gushwa, K. E.;Gustafson, E. K.;Gustafson, R.;Hacker, J. J.;Hall, B. R.;Hall, E. D.;Hammond, G.;Haney, M.;Hanke, M. M.;Hanks, J.;Hanna, C.;Hanson, J.;Hardwick, T.;Harms, J.;Harry, G. M.;Harry, I. W.;Hart, M. J.;Hartman, M. T.;Haster, C. J.;Haughian, K.;Heidmann, A.;Heintze, M. C.;Heitmann, H.;Hello, P.;Hemming, G.;Hendry, M.;Heng, I. S.;Hennig, J.;Henry, J.;Heptonstall, A. W.;Heurs, M.;Hild, S.;Hoak, D.;Hofman, D.;Holt, K.;Holz, D. E.;Hopkins, P.;Hough, J.;Houston, E. A.;Howell, E. J.;Hu, Y. M.;Huang, S.;Huerta, E. A.;Huet, D.;Hughey, B.;Huttner, S. H.;Huynh Dinh, T.;Indik, N.;Ingram, D. R.;Inta, R.;Isa, H. N.;Isac, J. M.;Isi, M.;Isogai, T.;Iyer, B. R.;Izumi, K.;Jacqmin, T.;Jang, H.;Jani, K.;Jaranowski, P.;Jawahar, S.;Jian, L.;Jiménez Forteza, F.;Johnson, W. W.;Jones, D. I.;Jones, R.;Jonker, R. J. G.;Ju, L.;Haris, K.;Kalaghatgi, C. V.;Kalogera, V.;Kandhasamy, S.;Kang, G.;Kanner, J. B.;Kapadia, S. J.;Karki, S.;Karvinen, K. S.;Kasprzack, M.;Katsavounidis, E.;Katzman, W.;Kaufer, S.;Kaur, T.;Kawabe, K.;Kéfélian, F.;Kehl, M. S.;Keitel, D.;Kelley, D. B.;Kells, W.;Kennedy, R.;Key, J. S.;Khalili, F. Y.;Khan, I.;Khan, Z.;Khazanov, E. A.;Kijbunchoo, N.;Kim, Chi Woong;Kim, Chunglee;Kim, J.;Kim, K.;Kim, N.;Kim, W.;Kim, Y. M.;Kimbrell, S. J.;King, E. J.;King, P. J.;Kissel, J. S.;Klein, B.;Kleybolte, L.;Klimenko, S.;Koehlenbeck, S. M.;Koley, S.;Kondrashov, V.;Kontos, A.;Korobko, M.;Korth, W. Z.;Kowalska, I.;Kozak, D. B.;Kringel, V.;Królak, A.;Krueger, C.;Kuehn, G.;Kumar, P.;Kumar, R.;Kuo, L.;Kutynia, A.;Lackey, B. D.;Landry, M.;Lange, J.;Lantz, B.;Lasky, P. D.;Laxen, M.;Lazzarini, A.;Lazzaro, C.;Leaci, P.;Leavey, S.;Lebigot, E. O.;Lee, C. H.;Lee, H. K.;Lee, H. M.;Lee, K.;Lenon, A.;Leonardi, M.;Leong, J. R.;Leroy, N.;Letendre, N.;Levin, Y.;Lewis, J. B.;Li, T. G. F.;Libson, A.;Littenberg, T. B.;Lockerbie, N. A.;Lombardi, A. L.;Lord, J. E.;Lorenzini, M.;Loriette, V.;Lormand, M.;Losurdo, G.;Lough, J. D.;Lück, H.;Lundgren, A. P.;Lynch, R.;Ma, Y.;Machenschalk, B.;Macinnis, M.;Macleod, D. M.;Magaña Sandoval, F.;Zertuche, L. Magaña;Magee, R. M.;Majorana, E.;Maksimovic, I.;Malvezzi, V.;Man, N.;Mandic, V.;Mangano, V.;Mansell, G. L.;Manske, M.;Mantovani, M.;Marchesoni, F.;Marion, F.;Márka, S.;Márka, Z.;Markosyan, A. S.;Maros, E.;Martelli, F.;Martellini, L.;Martin, I. W.;Martynov, D. V.;Marx, J. N.;Mason, K.;Masserot, A.;Massinger, T. J.;Masso Reid, M.;Mastrogiovanni, S.;Matichard, F.;Matone, L.;Mavalvala, N.;Mazumder, N.;Mccarthy, R.;Mcclelland, D. E.;Mccormick, S.;Mcguire, S. C.;Mcintyre, G.;Mciver, J.;Mcmanus, D. J.;Mcrae, T.;Mcwilliams, S. T.;Meacher, D.;Meadors, G. D.;Meidam, J.;Melatos, A.;Mendell, G.;Mercer, R. A.;Merilh, E. L.;Merzougui, M.;Meshkov, S.;Messenger, C.;Messick, C.;Metzdorff, R.;Meyers, P. M.;Mezzani, F.;Miao, H.;Michel, C.;Middleton, H.;Mikhailov, E. E.;Milano, L.;Miller, A. L.;Miller, A.;Miller, B. B.;Miller, J.;Millhouse, M.;Minenkov, Y.;Ming, J.;Mirshekari, S.;Mishra, C.;Mitra, S.;Mitrofanov, V. P.;Mitselmakher, G.;Mittleman, R.;Moggi, A.;Mohan, M.;Mohapatra, S. R. P.;Montani, M.;Moore, B. C.;Moore, C. J.;Moraru, D.;Moreno, G.;Morriss, S. R.;Mossavi, K.;Mours, B.;Mow Lowry, C. M.;Mueller, G.;Muir, A. W.;Mukherjee, Arunava;Mukherjee, D.;Mukherjee, S.;Mukund, N.;Mullavey, A.;Munch, J.;Murphy, D. J.;Murray, P. G.;Mytidis, A.;Nardecchia, I.;Naticchioni, L.;Nayak, R. K.;Nedkova, K.;Nelemans, G.;Nelson, T. J. N.;Neri, M.;Neunzert, A.;Newton, G.;Nguyen, T. T.;Nielsen, A. B.;Nissanke, S.;Nitz, A.;Nocera, F.;Nolting, D.;Normandin, M. E. N.;Nuttall, L. K.;Oberling, J.;Ochsner, E.;O'Dell, J.;Oelker, E.;Ogin, G. H.;Oh, J. J.;Oh, S. H.;Ohme, F.;Oliver, M.;Oppermann, P.;Oram, Richard J.;O'Reilly, B.;O'Shaughnessy, R.;Ottaway, D. J.;Overmier, H.;Owen, B. J.;Pai, A.;Pai, S. A.;Palamos, J. R.;Palashov, O.;Palomba, C.;Pal Singh, A.;Pan, H.;Pankow, C.;Pant, B. C.;Paoletti, F.;Paoli, A.;Papa, M. A.;Paris, H. R.;Parker, W.;Pascucci, D.;Pasqualetti, A.;PASSAQUIETI, ROBERTO;Passuello, D.;PATRICELLI, BARBARA;Patrick, Z.;Pearlstone, B. L.;Pedraza, M.;Pedurand, R.;Pekowsky, L.;Pele, A.;Penn, S.;Perreca, A.;Perri, L. M.;Phelps, M.;Piccinni, O. J.;Pichot, M.;Piergiovanni, F.;Pierro, V.;Pillant, G.;Pinard, L.;Pinto, I. M.;Pitkin, M.;Poe, M.;POGGIANI, ROSA;Popolizio, P.;Post, A.;Powell, J.;Prasad, J.;Predoi, V.;Prestegard, T.;Price, L. R.;Prijatelj, M.;Principe, M.;Privitera, S.;Prodi, G. A.;Prokhorov, L.;Puncken, O.;Punturo, M.;Puppo, P.;Pürrer, M.;Qi, H.;Qin, J.;Qiu, S.;Quetschke, V.;Quintero, E. A.;Quitzow James, R.;Raab, F. J.;Rabeling, D. S.;Radkins, H.;Raffai, P.;Raja, S.;Rajan, C.;Rakhmanov, M.;Rapagnani, P.;Raymond, V.;RAZZANO, MASSIMILIANO;Re, V.;Read, J.;Reed, C. M.;Regimbau, T.;Rei, L.;Reid, S.;Reitze, D. H.;Rew, H.;Reyes, S. D.;Ricci, F.;Riles, K.;Rizzo, M.;Robertson, N. A.;Robie, R.;Robinet, F.;Rocchi, A.;Rolland, L.;Rollins, J. G.;Roma, V. J.;Romano, J. D.;Romano, R.;Romanov, G.;Romie, J. H.;Rosińska, D.;Rowan, S.;Rüdiger, A.;Ruggi, P.;Ryan, K.;Sachdev, S.;Sadecki, T.;Sadeghian, L.;Sakellariadou, M.;Salconi, L.;Saleem, M.;Salemi, F.;Samajdar, A.;Sammut, L.;Sanchez, E. J.;Sandberg, V.;Sandeen, B.;Sanders, J. R.;Sassolas, B.;Saulson, P. R.;Sauter, O. E. S.;Savage, R. L.;Sawadsky, A.;Schale, P.;Schilling, R.;Schmidt, J.;Schmidt, P.;Schnabel, R.;Schofield, R. M. S.;Schönbeck, A.;Schreiber, E.;Schuette, D.;Schutz, B. F.;Scott, J.;Scott, S. M.;Sellers, D.;Sengupta, A. S.;Sentenac, D.;Sequino, V.;Sergeev, A.;Setyawati, Y.;Shaddock, D. A.;Shaffer, T.;Shahriar, M. S.;Shaltev, M.;Shapiro, B.;Shawhan, P.;Sheperd, A.;Shoemaker, D. H.;Siellez, K.;Siemens, X.;Sieniawska, M.;Sigg, D.;Silva, A. D.;Singer, A.;Singer, L. P.;Singh, A.;Singh, R.;Singhal, A.;Sintes, A. M.;Slagmolen, B. J. J.;Smith, J. R.;Smith, N. D.;Smith, R. J. E.;Son, E. J.;Sorazu, B.;Sorrentino, F.;Souradeep, T.;Srivastava, A. K.;Staley, A.;Steinke, M.;Steinlechner, J.;Steinlechner, S.;Steinmeyer, D.;Stephens, B. C.;Stone, R.;Strain, K. A.;Straniero, N.;Stratta, G.;Strauss, N. A.;Strigin, S.;Sturani, R.;Stuver, A. L.;Summerscales, T. Z.;Sun, L.;Sunil, S.;Sutton, P. J.;Swinkels, B. L.;Szczepańczyk, M. J.;Tacca, M.;Talukder, D.;Tanner, D. B.;Tápai, M.;Tarabrin, S. P.;Taracchini, A.;Taylor, R.;Theeg, T.;Thirugnanasambandam, M. P.;Thomas, E. G.;Thomas, M.;Thomas, P.;Thorne, K. A.;Thorne, K. S.;Thrane, E.;Tiwari, S.;Tiwari, V.;Tokmakov, K. V.;Toland, K.;Tomlinson, C.;TONELLI, MAURO;Tornasi, Z.;Torres, C. V.;Torrie, C. I.;Töyrä, D.;Travasso, F.;Traylor, G.;Trifirò, D.;Tringali, M. C.;Trozzo, L.;Tse, M.;Turconi, M.;Tuyenbayev, D.;Ugolini, D.;Unnikrishnan, C. S.;Urban, A. L.;Usman, S. A.;Vahlbruch, H.;Vajente, G.;Valdes, G.;Van Bakel, N.;Van Beuzekom, M.;Van Den Brand, J. F. J.;Van Den Broeck, C.;Vander Hyde, D. C.;Van Der Schaaf, L.;Van Heijningen, J. V.;Van Veggel, A. A.;Vardaro, M.;Vass, S.;Vasúth, M.;Vaulin, R.;Vecchio, A.;Vedovato, G.;Veitch, J.;Veitch, P. J.;Venkateswara, K.;Verkindt, D.;Vetrano, F.;Viceré, A.;Vinciguerra, S.;Vine, D. J.;Vinet, J. Y.;Vitale, S.;Vo, T.;Vocca, H.;Vorvick, C.;Voss, D. V.;Vousden, W. D.;Vyatchanin, S. P.;Wade, A. R.;Wade, L. E.;Wade, M.;Walker, M.;Wallace, L.;Walsh, S.;Wang, G.;Wang, H.;Wang, M.;Wang, X.;Wang, Y.;Ward, R. L.;Warner, J.;Was, M.;Weaver, B.;Wei, L. W.;Weinert, M.;Weinstein, A. J.;Weiss, R.;Wen, L.;Weßels, P.;Westphal, T.;Wette, K.;Whelan, J. T.;Whiting, B. F.;Williams, R. D.;Williamson, A. R.;Willis, J. L.;Willke, B.;Wimmer, M. H.;Winkler, W.;Wipf, C. C.;Wittel, H.;Woan, G.;Woehler, J.;Worden, J.;Wright, J. L.;Wu, D. S.;Wu, G.;Yablon, J.;Yam, W.;Yamamoto, H.;Yancey, C. C.;Yu, H.;Yvert, M.;Zadrożny, A.;Zangrando, L.;Zanolin, M.;Zendri, J. P.;Zevin, M.;Zhang, L.;Zhang, M.;Zhang, Y.;Zhao, C.;Zhou, M.;Zhou, Z.;Zhu, X. J.;Zucker, M. E.;Zuraw, S. E.;Zweizig, J.;Boyle, M.;Campanelli, M.;Chu, T.;Clark, M.;Fauchon Jones, E.;Fong, H.;Healy, J.;Hemberger, D.;Hinder, I.;Husa, S.;Kalaghati, C.;Khan, S.;Kidder, L. E.;Kinsey, M.;Laguna, P.;London, L. T.;Lousto, C. O.;Lovelace, G.;Ossokine, S.;Pannarale, F.;Pfeiffer, H. P.;Scheel, M.;Shoemaker, D. M.;Szilagyi, B.;Teukolsky, S.;Vinuales, A. Vano;Zlochower, Y.
2016-01-01
Abstract
We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations - including sources with two independent, precessing spins - we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed using previously estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz [64 M-82 M], mass ratio 1/q=m2/m1 [0.6,1], and effective aligned spin χeff [-0.3,0.2], where χeff=(S1/m1+S2/m2)·L/M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1,2 up to at least 0.8, with random orientations. Further detailed follow-up calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole's redshifted mass is consistent with Mf,z in the range 64.0 M-73.5 M and the final black hole's dimensionless spin parameter is consistent with af=0.62-0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/814904
Citazioni
ND
115
110
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.