Let (M, g) be a smooth compact n-dimensional Riemannian manifold (n ≥2) with smooth (n − 1)- dimensional boundary δM. We prove that the stable critical points of the mean curvature of the boundary generates H¹(M) solutions for the a singularly perturbed subcritical elliptic problem with Neumann boundary conditions when the perturbation parameter is small.
Construction of Solutions for a Nonlinear Elliptic Problem on Riemannian Manifolds with Boundary
GHIMENTI, MARCO GIPO
;MICHELETTI, ANNA MARIA
2016-01-01
Abstract
Let (M, g) be a smooth compact n-dimensional Riemannian manifold (n ≥2) with smooth (n − 1)- dimensional boundary δM. We prove that the stable critical points of the mean curvature of the boundary generates H¹(M) solutions for the a singularly perturbed subcritical elliptic problem with Neumann boundary conditions when the perturbation parameter is small.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ANS-2016-Construction.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
666.12 kB
Formato
Adobe PDF
|
666.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
curvbordo2.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
523.45 kB
Formato
Adobe PDF
|
523.45 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.