Orthodontic treatments based on removable thermoplastic aligners are becoming quite common in clinical practice. However, there is no technical literature explaining how the loads are transferred from the thermoformed aligner to the patient dentition. Moreover, the role of auxiliary elements used in combination with the aligner, such as attachments and divots, still needs to be thoroughly explained. This paper is focused on the development of a Finite Element (FE) model to be used in the design process of shape attributes of orthodontic aligners. Geometrical models of a maxillary dental arch, including crown and root shapes, were created by combining optical scanning and Cone Beam Computed Tomography (CBCT). Finite Element Analysis (FEA) was used to compare five different aligner’s configurations for the same tooth orthodontic tipping movement (rotation around the tooth’s center of resistance). The different scenarios were analyzed by comparing the moment along the mesio-distal direction of the tooth and the resulting moment-to-force ratio (M:F) delivered to the tooth on the plane of interest. Results evidenced the influence of the aligner’s configuration on the effectiveness of the planned orthodontic movement.
Computer Aided Engineering of Auxiliary Elements for Enhanced Orthodontic Appliances
SAVIGNANO, ROBERTO;BARONE, SANDRO;PAOLI, ALESSANDRO;RAZIONALE, ARMANDO VIVIANO
2017-01-01
Abstract
Orthodontic treatments based on removable thermoplastic aligners are becoming quite common in clinical practice. However, there is no technical literature explaining how the loads are transferred from the thermoformed aligner to the patient dentition. Moreover, the role of auxiliary elements used in combination with the aligner, such as attachments and divots, still needs to be thoroughly explained. This paper is focused on the development of a Finite Element (FE) model to be used in the design process of shape attributes of orthodontic aligners. Geometrical models of a maxillary dental arch, including crown and root shapes, were created by combining optical scanning and Cone Beam Computed Tomography (CBCT). Finite Element Analysis (FEA) was used to compare five different aligner’s configurations for the same tooth orthodontic tipping movement (rotation around the tooth’s center of resistance). The different scenarios were analyzed by comparing the moment along the mesio-distal direction of the tooth and the resulting moment-to-force ratio (M:F) delivered to the tooth on the plane of interest. Results evidenced the influence of the aligner’s configuration on the effectiveness of the planned orthodontic movement.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.