Industrial plant-borne by-products can be sources of low-cost chemicals, potentially useful to build eco-friendly control strategies against mosquitoes. Neem cake is a cheap by-product of neem oil extraction obtained by pressing the seeds of Azadirachta indica. Neem products are widely used as insecticides since rarely induce resistance because their multiple mode of action against insect pests and low-toxicity rates have been detected against vertebrates. In this research, we used field bioassays to assess the effective oviposition repellence of neem cake fractions of increasing polarity [nhexane (A), methanol (B), ethyl acetate (C), n-butanol (D), and aqueous (E) fraction] against Aedes albopictus, currently the most invasive mosquito worldwide. These fractions, already characterized for low nortriterpenoids contents by HPLC analyses, were analyzed for their total content by HPTLC, highlighting striking differences in their chemical composition. Field results showed that B, A, and C tested at 100 ppm exerted higher effective repellence over the control (71.33, 88.59, and 73.49 % of ER, respectively), while E and D did not significantly deter A. albopictus oviposition (17.06 and 22.72 % of ER, respectively). The highest oviposition activity index was achieved by A (−0.82), followed by C (−0.63), and B (−0.62). Lower OAIs were achieved by D (−0.14) and E (−0.09). On the basis of our results, we believe that A, B, and C are very promising as oviposition deterrents against the arbovirus vector A. albopictus since they are proved as rich in active metabolites, cheap, and really effective at low doses.

Shedding light on bioactivity of botanical by-products: neem cake compounds deter oviposition of the arbovirus vector Aedes albopictus (Diptera: Culicidae) in the field

BENELLI, GIOVANNI;CONTI, BARBARA;
2014-01-01

Abstract

Industrial plant-borne by-products can be sources of low-cost chemicals, potentially useful to build eco-friendly control strategies against mosquitoes. Neem cake is a cheap by-product of neem oil extraction obtained by pressing the seeds of Azadirachta indica. Neem products are widely used as insecticides since rarely induce resistance because their multiple mode of action against insect pests and low-toxicity rates have been detected against vertebrates. In this research, we used field bioassays to assess the effective oviposition repellence of neem cake fractions of increasing polarity [nhexane (A), methanol (B), ethyl acetate (C), n-butanol (D), and aqueous (E) fraction] against Aedes albopictus, currently the most invasive mosquito worldwide. These fractions, already characterized for low nortriterpenoids contents by HPLC analyses, were analyzed for their total content by HPTLC, highlighting striking differences in their chemical composition. Field results showed that B, A, and C tested at 100 ppm exerted higher effective repellence over the control (71.33, 88.59, and 73.49 % of ER, respectively), while E and D did not significantly deter A. albopictus oviposition (17.06 and 22.72 % of ER, respectively). The highest oviposition activity index was achieved by A (−0.82), followed by C (−0.63), and B (−0.62). Lower OAIs were achieved by D (−0.14) and E (−0.09). On the basis of our results, we believe that A, B, and C are very promising as oviposition deterrents against the arbovirus vector A. albopictus since they are proved as rich in active metabolites, cheap, and really effective at low doses.
2014
Benelli, Giovanni; Conti, Barbara; Garreffa, Rita; Nicoletti, Marcello
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/822948
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact