Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras.

Matrix approach to hypercomplex Appell polynomials

ACETO, LIDIA
Primo
;
2017-01-01

Abstract

Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras.
2017
Aceto, Lidia; Helmut Robert, Malonek; Graça, Tomaz
File in questo prodotto:
File Dimensione Formato  
2017_APNUM.pdf

solo utenti autorizzati

Descrizione: 2017_APNUM
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 304.01 kB
Formato Adobe PDF
304.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ACETO_Malonek_Tomaz.pdf

Open Access dal 01/07/2019

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 382.33 kB
Formato Adobe PDF
382.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/823572
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact