We present a K-feldspar-liquid hygrometer specific to alkaline differentiated magmas that is calibrated through the regression analysis of sanidine and anorthoclase crystals coexisting with trachyte and phonolite melts. Partial-regression leverage plots were used to determine the minimum number of regression parameters that closely describe the variance of the dataset. The derived model was tested using K-feldspar-liquid pairs not included into the calibration dataset in order to address issues of systematic errors. When K-feldspar and plagioclase crystals coprecipitate from the same alkaline liquid under identical P-T-X-fO2-H2O conditions, the ability prediction of the new hygrometer is comparable to that of previous plagioclase-liquid models. To minimize the error of H2O estimate caused by the inadvertent use of disequilibrium data in natural samples, we have also calibrated a new test for equilibrium based on Or-Ab exchange between K-feldspar and coexisting melt. As an immediate application for both equilibrium and hygrometer models, we used as input data K-feldspar-liquid pairs from alkaline explosive eruptions at the Phlegrean Fields. The estimates of H2O dissolved in natural trachyte and phonolite magmas closely match those determined by melt inclusion analysis and H2O solubility modeling. This leads to the conclusion that our new models can significantly contribute to a better quantitative characterization of the H2O content in differentiated alkaline magmas feeding large-volume explosive eruptions.

A K-feldspar-liquid hygrometer specific to alkaline differentiated magmas

MASOTTA, MATTEO;
2015-01-01

Abstract

We present a K-feldspar-liquid hygrometer specific to alkaline differentiated magmas that is calibrated through the regression analysis of sanidine and anorthoclase crystals coexisting with trachyte and phonolite melts. Partial-regression leverage plots were used to determine the minimum number of regression parameters that closely describe the variance of the dataset. The derived model was tested using K-feldspar-liquid pairs not included into the calibration dataset in order to address issues of systematic errors. When K-feldspar and plagioclase crystals coprecipitate from the same alkaline liquid under identical P-T-X-fO2-H2O conditions, the ability prediction of the new hygrometer is comparable to that of previous plagioclase-liquid models. To minimize the error of H2O estimate caused by the inadvertent use of disequilibrium data in natural samples, we have also calibrated a new test for equilibrium based on Or-Ab exchange between K-feldspar and coexisting melt. As an immediate application for both equilibrium and hygrometer models, we used as input data K-feldspar-liquid pairs from alkaline explosive eruptions at the Phlegrean Fields. The estimates of H2O dissolved in natural trachyte and phonolite magmas closely match those determined by melt inclusion analysis and H2O solubility modeling. This leads to the conclusion that our new models can significantly contribute to a better quantitative characterization of the H2O content in differentiated alkaline magmas feeding large-volume explosive eruptions.
2015
Mollo, Silvio; Masotta, Matteo; Forni, Francesca; Bachmann, Olivier; De Astis, Gianfilippo; Moore, Gordon; Scarlato, Piergiorgio
File in questo prodotto:
File Dimensione Formato  
Mollo et al. (CG 2015).pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Mollo et al (CG2015)_revised.pdf

Open Access dal 22/04/2017

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/828121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 46
social impact