In recent years, several schemes for laser-driven fast ignition (FI) of inertial confinement fusion targets have been proposed. In all schemes, a key element is the conversion of the energy of a Petawatt laser pulse into a beam of strongly relativistic electrons and the transport of the latter into a dense plasma or a solid target. The electron beam may either drive ignition directly or be used to accelerate a proton beam which is In turn used to ignite. Both ignition scenarios involve a number of physical processes which are widely unexplored and challenging for theory and simulation. In this contribution, we present theoretical and numerical investigations of several fundamental issues of relevance to F1 from the stage of electron generation and transport to that of proton energy deposition, including electron beam instabilities, electron transport in solid-density plasma, proton transport in the coronal plasma, and requirements for proton beam driven ignition.

Fundamental Issues in Fast Ignition Physics: from Relativistic Electron Generation to Proton Driven Ignition

CALIFANO, FRANCESCO;CORNOLTI, FULVIO;PEGORARO, FRANCESCO;
2003-01-01

Abstract

In recent years, several schemes for laser-driven fast ignition (FI) of inertial confinement fusion targets have been proposed. In all schemes, a key element is the conversion of the energy of a Petawatt laser pulse into a beam of strongly relativistic electrons and the transport of the latter into a dense plasma or a solid target. The electron beam may either drive ignition directly or be used to accelerate a proton beam which is In turn used to ignite. Both ignition scenarios involve a number of physical processes which are widely unexplored and challenging for theory and simulation. In this contribution, we present theoretical and numerical investigations of several fundamental issues of relevance to F1 from the stage of electron generation and transport to that of proton energy deposition, including electron beam instabilities, electron transport in solid-density plasma, proton transport in the coronal plasma, and requirements for proton beam driven ignition.
2003
A., Macchi; A., Antonicci; S., Atzeni; D., Batani; Califano, Francesco; Cornolti, Fulvio; H. J., Honrubia; T. V., Lisseikina; Pegoraro, Francesco; M., Temporal
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/82929
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 55
social impact