A bone healing assessment is crucial for the successful treatment of fractures, particularly in terms of the timing of support devices. However, in clinical practice, this assessment is only made qualitatively through bone manipulation and X-rays, and hence cannot be repeated as often as might be required. The present study reconsiders the quantitative method of frequency response analysis for healing assessments, and specifically for fractures treated with an external fixator. The novelty consists in the fact that bone excitation and response are achieved through fixator pins, thus overcoming the problem of transmission through soft-tissues and their damping effect. The main objective was to develop and validate a test procedure in order to characterize the treated bone. More than 80 tests were performed on a tibia phantom alone, a phantom with pins, and a phantom with a complete fixator. Different excitation techniques and input–output combinations were compared. The results demonstrated the effectiveness of a procedure based on impact tests using a micro-hammer. Pins and fixator were demonstrated to influence the frequency response of the phantom by increasing the number of resonant frequencies. This procedure will be applied in future studies to monitor healing both in in vitro and in vivo conditions.

Vibration Testing Procedures for Bone Stiffness Assessment in Fractures Treated with External Fixation

MATTEI, LORENZA;DI PUCCIO, FRANCESCA;CIULLI, ENRICO;MARCHETTI, STEFANO
2017-01-01

Abstract

A bone healing assessment is crucial for the successful treatment of fractures, particularly in terms of the timing of support devices. However, in clinical practice, this assessment is only made qualitatively through bone manipulation and X-rays, and hence cannot be repeated as often as might be required. The present study reconsiders the quantitative method of frequency response analysis for healing assessments, and specifically for fractures treated with an external fixator. The novelty consists in the fact that bone excitation and response are achieved through fixator pins, thus overcoming the problem of transmission through soft-tissues and their damping effect. The main objective was to develop and validate a test procedure in order to characterize the treated bone. More than 80 tests were performed on a tibia phantom alone, a phantom with pins, and a phantom with a complete fixator. Different excitation techniques and input–output combinations were compared. The results demonstrated the effectiveness of a procedure based on impact tests using a micro-hammer. Pins and fixator were demonstrated to influence the frequency response of the phantom by increasing the number of resonant frequencies. This procedure will be applied in future studies to monitor healing both in in vitro and in vivo conditions.
2017
Mattei, Lorenza; Longo, Antonia; DI PUCCIO, Francesca; Ciulli, Enrico; Marchetti, Stefano
File in questo prodotto:
File Dimensione Formato  
fix1_online.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/832458
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact