The quality assurance of particle therapy treatment is a fundamental issue that can be addressed by developing reliable monitoring techniques and indicators of the treatment plan correctness. Among the available imaging techniques, positron emission tomography (PET) has long been investigated and then clinically applied to proton and carbon beams. In 2013, the Innovative Solutions for Dosimetry in Hadrontherapy (INSIDE) collaboration proposed an innovative bimodal imaging concept that combines an in-beam PET scanner with a tracking system for charged particle imaging. This paper presents the general architecture of the INSIDE project but focuses on the in-beam PET scanner that has been designed to reconstruct the particles range with millimetric resolution within a fraction of the dose delivered in a treatment of head and neck tumors. The in-beam PET scanner has been recently installed at the Italian National Center of Oncologic Hadrontherapy (CNAO) in Pavia, Italy, and the commissioning phase has just started. The results of the first beam test with clinical proton beams on phantoms clearly show the capability of the in-beam PET to operate during the irradiation delivery and to reconstruct on-line the beam-induced activity map. The accuracy in the activity distal fall-off determination is millimetric for therapeutic doses.

INSIDE in-beam positron emission tomography system for particle range monitoring in hadrontherapy

BISOGNI, MARIA GIUSEPPINA
Writing – Review & Editing
;
BELCARI, NICOLA;CAMARLINGHI, NICCOLO';MORROCCHI, MATTEO;ROSSO, VALERIA;SPORTELLI, GIANCARLO;
2017-01-01

Abstract

The quality assurance of particle therapy treatment is a fundamental issue that can be addressed by developing reliable monitoring techniques and indicators of the treatment plan correctness. Among the available imaging techniques, positron emission tomography (PET) has long been investigated and then clinically applied to proton and carbon beams. In 2013, the Innovative Solutions for Dosimetry in Hadrontherapy (INSIDE) collaboration proposed an innovative bimodal imaging concept that combines an in-beam PET scanner with a tracking system for charged particle imaging. This paper presents the general architecture of the INSIDE project but focuses on the in-beam PET scanner that has been designed to reconstruct the particles range with millimetric resolution within a fraction of the dose delivered in a treatment of head and neck tumors. The in-beam PET scanner has been recently installed at the Italian National Center of Oncologic Hadrontherapy (CNAO) in Pavia, Italy, and the commissioning phase has just started. The results of the first beam test with clinical proton beams on phantoms clearly show the capability of the in-beam PET to operate during the irradiation delivery and to reconstruct on-line the beam-induced activity map. The accuracy in the activity distal fall-off determination is millimetric for therapeutic doses.
2017
Bisogni, MARIA GIUSEPPINA; Attili, Andrea; Battistoni, Giuseppe; Belcari, Nicola; Camarlinghi, Niccolo'; Cerello, Piergiorgio; Coli, Silvia; DEL GUERRA, Alberto; Ferrari, Alfredo; Ferrero, Veronica; Fiorina, Elisa; Giraudo, Giuseppe; Kostara, Eleftheria; Morrocchi, Matteo; Pennazio, Francesco; Peroni, Cristiana; Piliero, MARIA ANTONIETTA; Pirrone, Giovanni; Rivetti, Angelo; Rolo, Manuel D.; Rosso, Valeria; Sala, Paola; Sportelli, Giancarlo; Wheadon, Richard
File in questo prodotto:
File Dimensione Formato  
bisogni_JMI2017.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/836142
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 52
social impact