We investigate matching for the family Tα(x)=βx+α(mod1), α∈[0,1], for fixed β>1. Matching refers to the property that there is an n∈N such that Tα^n(0)=Tα^n(1). We show that for various Pisot numbers β, matching occurs on an open dense set of α∈[0,1] and we compute the Hausdorff dimension of its complement. Numerical evidence shows more cases where matching is prevalent.

Matching for generalised beta-transformations

CARMINATI, CARLO;
2017-01-01

Abstract

We investigate matching for the family Tα(x)=βx+α(mod1), α∈[0,1], for fixed β>1. Matching refers to the property that there is an n∈N such that Tα^n(0)=Tα^n(1). We show that for various Pisot numbers β, matching occurs on an open dense set of α∈[0,1] and we compute the Hausdorff dimension of its complement. Numerical evidence shows more cases where matching is prevalent.
2017
Bruin, Henk; Carminati, Carlo; Kalle, Charlene
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/836384
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact