This paper describes a hardware-in-the-loop (HiL) simulation platform specifically designed to test state estimators for Li-ion batteries in electric vehicle applications. Two promising estimators, the Mix algorithm combined with the moving window least squares and the dual extended Kalman filter, are implemented in hardware on a field-programmable gate array (FPGA) and evaluated using the developed HiL platform. The simulation results show the effectiveness of using FPGAs for hardware acceleration of battery state estimators and the importance of their assessment under different operating conditions, i.e., driving schedules, which can be simulated by the HiL platform.
Hardware-in-the-loop simulation of FPGA-based state estimators for electric vehicle batteries
MORELLO, ROCCO;BARONTI, FEDERICO;DI RIENZO, ROBERTO;RONCELLA, ROBERTO;SALETTI, ROBERTO
2016-01-01
Abstract
This paper describes a hardware-in-the-loop (HiL) simulation platform specifically designed to test state estimators for Li-ion batteries in electric vehicle applications. Two promising estimators, the Mix algorithm combined with the moving window least squares and the dual extended Kalman filter, are implemented in hardware on a field-programmable gate array (FPGA) and evaluated using the developed HiL platform. The simulation results show the effectiveness of using FPGAs for hardware acceleration of battery state estimators and the importance of their assessment under different operating conditions, i.e., driving schedules, which can be simulated by the HiL platform.File | Dimensione | Formato | |
---|---|---|---|
paper_final.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.