Aicardi-Goutières syndrome is a rare progressive encephalopathy characterized by acquired microcephaly, basal ganglia calcification, and chronic CSF lymphocytosis, raised levels of interferon alpha in CSF and plasma and chill-blain type lesions. A possible mechanism of injury is cytokine related microangiopathy. We report brain imaging and proton (1H) and phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) findings during the first year after birth in two patients. In patient 1 the evolution of brain metabolite ratios and intracellular pH obtained from serial 1H (long TE) and 31P MRS studies are described; in patient 2 a single 1H (short TE) MRS study is described. Imaging findings included basal ganglia calcifications, cerebral atrophy, and leukodystrophy. The MRS results demonstrated that Aicardi-Goutières syndrome is associated with reduced NAA/Cr, reflecting decreased neuronal/axonal density or viability, increased myo-inositol/Cr, reflecting gliosis or osmotic stress and a persisting brain lactic alkalosis. A brain lactic alkalosis has also been observed in those infants surviving perinatal hypoxia-ischaemia but with a poor neurodevelopmental outcome. A possible mechanism leading to brain alkalosis is up-regulation of the Na+/H+ transporter by focal areas of ischaemia related to the microangiopathy or by pro-inflammatory cytokines. Such brain alkalosis may be detrimental to cell survival and may increase glycolytic rate in astrocytes leading to an increased production of lactate.

Brain lactic alkalosis in Aicardi-Goutières Syndrome

BATTINI R.;CIONI, GIOVANNI
2004-01-01

Abstract

Aicardi-Goutières syndrome is a rare progressive encephalopathy characterized by acquired microcephaly, basal ganglia calcification, and chronic CSF lymphocytosis, raised levels of interferon alpha in CSF and plasma and chill-blain type lesions. A possible mechanism of injury is cytokine related microangiopathy. We report brain imaging and proton (1H) and phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) findings during the first year after birth in two patients. In patient 1 the evolution of brain metabolite ratios and intracellular pH obtained from serial 1H (long TE) and 31P MRS studies are described; in patient 2 a single 1H (short TE) MRS study is described. Imaging findings included basal ganglia calcifications, cerebral atrophy, and leukodystrophy. The MRS results demonstrated that Aicardi-Goutières syndrome is associated with reduced NAA/Cr, reflecting decreased neuronal/axonal density or viability, increased myo-inositol/Cr, reflecting gliosis or osmotic stress and a persisting brain lactic alkalosis. A brain lactic alkalosis has also been observed in those infants surviving perinatal hypoxia-ischaemia but with a poor neurodevelopmental outcome. A possible mechanism leading to brain alkalosis is up-regulation of the Na+/H+ transporter by focal areas of ischaemia related to the microangiopathy or by pro-inflammatory cytokines. Such brain alkalosis may be detrimental to cell survival and may increase glycolytic rate in astrocytes leading to an increased production of lactate.
2004
Robertson, N. J.; Stafler, P.; Battini, R.; Cheong, J.; Tosetti, M.; Bianchi, M. C.; Cox, I. J.; Cowan, F. M.; Cioni, Giovanni
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/83772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? ND
social impact