We extend the validity of a Gromov’s dimension comparison estimate for topological hypersurfaces to sufficiently large classes of rectifiable sets, arising from Sobolev mappings. Our tools are a suitably weak exterior differentiation for pullback differential forms and a new low rank property for Sobolev mappings.

A Gromov's dimension comparison estimate for rectifiable sets

MAGNANI, VALENTINO;
2017-01-01

Abstract

We extend the validity of a Gromov’s dimension comparison estimate for topological hypersurfaces to sufficiently large classes of rectifiable sets, arising from Sobolev mappings. Our tools are a suitably weak exterior differentiation for pullback differential forms and a new low rank property for Sobolev mappings.
2017
Magnani, Valentino; Zapadinskaya, Aleksandra
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/838708
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact