Purpose To report on single-fraction stereotactic body radiotherapy (RT) (SBRT) with flattening filter (FF)–free (FFF) volumetric modulated arc therapy (VMAT) for lung cancer and to compare dosimetric results with VMAT with FF. Methods and materials Overall, 25 patients were treated with 6-MV FFF VMAT (Varian TrueBeam STx LINAC) to a prescribed dose of 24 Gy in a single fraction. Treatment plans were recreated using FF VMAT. Dose-volume indices, monitor units (MU), and treatment times were compared between FFF and FF VMAT techniques. Results Dose constraints to PTV, spinal cord, and lungs were reached in FFF and FF plans. In FFF plans, average conformity index was 1.13 (95% CI: 1.07 to1.38). Maximum doses to spinal cord, heart, esophagus, and trachea were 2.9 Gy (95% CI: 0.4 to 6.7 Gy), 0.8 Gy (95% CI: 0 to 3.6 Gy), 3.3 Gy (95% CI: 0.02 to 13.9 Gy), and 1.5 Gy (95% CI: 0 to 4.9 Gy), respectively. Average V7 Gy, V7.4 Gy, and mean dose to the healthy lung were 126.5 cc (95% CI: 41.3 to 248.9 cc), 107.3 cc (95% CI: 18.7 to 232.8 cc), and 1.1 Gy (95% CI: 0.3 to 2.2 Gy), respectively. No statistically significant differences were found in dosimetric results and MU between FF and FFF treatments. Treatment time was reduced by an average factor of 2.31 (95% CI: 2.15 to 2.43) from FF treatments to FFF, and the difference was statistically significant. Conclusions FFF VMAT for lung SBRT provides equivalent dosimetric results to the target and organs at risk as FF VMAT while significantly reducing treatment time.
Single-fraction flattening filter–free volumetric modulated arc therapy for lung cancer: Dosimetric results and comparison with flattened beams technique
PAIAR, FABIOLA;
2016-01-01
Abstract
Purpose To report on single-fraction stereotactic body radiotherapy (RT) (SBRT) with flattening filter (FF)–free (FFF) volumetric modulated arc therapy (VMAT) for lung cancer and to compare dosimetric results with VMAT with FF. Methods and materials Overall, 25 patients were treated with 6-MV FFF VMAT (Varian TrueBeam STx LINAC) to a prescribed dose of 24 Gy in a single fraction. Treatment plans were recreated using FF VMAT. Dose-volume indices, monitor units (MU), and treatment times were compared between FFF and FF VMAT techniques. Results Dose constraints to PTV, spinal cord, and lungs were reached in FFF and FF plans. In FFF plans, average conformity index was 1.13 (95% CI: 1.07 to1.38). Maximum doses to spinal cord, heart, esophagus, and trachea were 2.9 Gy (95% CI: 0.4 to 6.7 Gy), 0.8 Gy (95% CI: 0 to 3.6 Gy), 3.3 Gy (95% CI: 0.02 to 13.9 Gy), and 1.5 Gy (95% CI: 0 to 4.9 Gy), respectively. Average V7 Gy, V7.4 Gy, and mean dose to the healthy lung were 126.5 cc (95% CI: 41.3 to 248.9 cc), 107.3 cc (95% CI: 18.7 to 232.8 cc), and 1.1 Gy (95% CI: 0.3 to 2.2 Gy), respectively. No statistically significant differences were found in dosimetric results and MU between FF and FFF treatments. Treatment time was reduced by an average factor of 2.31 (95% CI: 2.15 to 2.43) from FF treatments to FFF, and the difference was statistically significant. Conclusions FFF VMAT for lung SBRT provides equivalent dosimetric results to the target and organs at risk as FF VMAT while significantly reducing treatment time.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.