We study the phase diagram of Nf=2+1 QCD in the T-μB plane and investigate the critical point corresponding to the onset of the Roberge-Weiss transition, which is found for imaginary values of μB. We make use of stout improved staggered fermions and of the tree level Symanzik gauge action and explore four different sets of lattice spacings, corresponding to Nt=4, 6, 8, 10, and different spatial sizes, in order to assess the universality class of the critical point. The continuum extrapolated value of the endpoint temperature is found to be TRW=208(5) MeV, i.e. TRW/Tc∼1.34(7), where Tc is the chiral pseudocritical temperature at zero chemical potential, while our finite size scaling analysis, performed on Nt=4 and Nt=6 lattices, provides evidence for a critical point in the 3D Ising universality class.

Roberge-Weiss endpoint at the physical point of Nf=2+1 QCD

BONATI, CLAUDIO;D'ELIA, MASSIMO;MARITI, MARCO;MESITI, MICHELE;
2016-01-01

Abstract

We study the phase diagram of Nf=2+1 QCD in the T-μB plane and investigate the critical point corresponding to the onset of the Roberge-Weiss transition, which is found for imaginary values of μB. We make use of stout improved staggered fermions and of the tree level Symanzik gauge action and explore four different sets of lattice spacings, corresponding to Nt=4, 6, 8, 10, and different spatial sizes, in order to assess the universality class of the critical point. The continuum extrapolated value of the endpoint temperature is found to be TRW=208(5) MeV, i.e. TRW/Tc∼1.34(7), where Tc is the chiral pseudocritical temperature at zero chemical potential, while our finite size scaling analysis, performed on Nt=4 and Nt=6 lattices, provides evidence for a critical point in the 3D Ising universality class.
2016
Bonati, Claudio; D'Elia, Massimo; Mariti, Marco; Mesiti, Michele; Negro, Francesco; Sanfilippo, Francesco
File in questo prodotto:
File Dimensione Formato  
PhysRevD.93.pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 681.4 kB
Formato Adobe PDF
681.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/840429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 31
social impact