The deployment of robots to assist in environments hostile for humans during emergency scenarios require robots to demonstrate enhanced physical performance, that includes adequate power, adaptability and robustness to physical interactions and efficient operation. This work presents the design and development of the lower body of the new high performance humanoid WALK-MAN, a robot developed recently to assist in disaster response scenarios. The paper introduces the details of the WALK-MAN lower-body, highlighting the innovative design optimization features considered to maximize the leg performance. Starting from the general lower body specifications the objectives of the design and how they were addressed are introduced, including the selection of the leg kinematics, the arrangement of the actuators and their integration with the leg structure to maximize the range of motion, reduce the leg mass and inertia, and shape the leg mass distribution for better dynamic performance. Physical robustness is ensured with the integration of elastic transmission and impact energy absorbing covers. Experimental walking trials demonstrate the correct operation of the legs while executing a walking gait.

WALK-MAN humanoid lower body design optimization for enhanced physical performance

GARABINI, MANOLO;BICCHI, ANTONIO;
2016-01-01

Abstract

The deployment of robots to assist in environments hostile for humans during emergency scenarios require robots to demonstrate enhanced physical performance, that includes adequate power, adaptability and robustness to physical interactions and efficient operation. This work presents the design and development of the lower body of the new high performance humanoid WALK-MAN, a robot developed recently to assist in disaster response scenarios. The paper introduces the details of the WALK-MAN lower-body, highlighting the innovative design optimization features considered to maximize the leg performance. Starting from the general lower body specifications the objectives of the design and how they were addressed are introduced, including the selection of the leg kinematics, the arrangement of the actuators and their integration with the leg structure to maximize the range of motion, reduce the leg mass and inertia, and shape the leg mass distribution for better dynamic performance. Physical robustness is ensured with the integration of elastic transmission and impact energy absorbing covers. Experimental walking trials demonstrate the correct operation of the legs while executing a walking gait.
2016
9781467380263
9781467380263
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/842833
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 47
social impact