Techniques to handle traffic bursts and out-of-order arrivals are of paramount importance to provide real-time sensor data analytics in domains like traffic surveillance, transportation management, healthcare and security applications. In these systems the amount of raw data coming from sensors must be analyzed by continuous queries that extract value-added information used to make informed decisions in real-time. To perform this task with timing constraints, parallelism must be exploited in the query execution in order to enable the real-time processing on parallel architectures. In this paper we focus on continuous preference queries, a representative class of continuous queries for decision making, and we propose a parallel query model targeting the efficient processing over out-of-order and bursty data streams. We study how to integrate punctuation mechanisms in order to enable out-of-order processing. Then, we present advanced scheduling strategies targeting scenarios with different burstiness levels, parameterized using the index of dispersion quantity. Extensive experiments have been performed using synthetic datasets and real-world data streams obtained from an existing real-time locating system. The experimental evaluation demonstrates the efficiency of our parallel solution and its effectiveness in handling the out-of-orderness degrees and burstiness levels of real-world applications.

Parallel Continuous Preference Queries over Out-of-Order and Bursty Data Streams

MENCAGLI, GABRIELE
Primo
;
TORQUATI, MASSIMO
Secondo
;
DANELUTTO, MARCO
Penultimo
;
DE MATTEIS, TIZIANO
Ultimo
2017-01-01

Abstract

Techniques to handle traffic bursts and out-of-order arrivals are of paramount importance to provide real-time sensor data analytics in domains like traffic surveillance, transportation management, healthcare and security applications. In these systems the amount of raw data coming from sensors must be analyzed by continuous queries that extract value-added information used to make informed decisions in real-time. To perform this task with timing constraints, parallelism must be exploited in the query execution in order to enable the real-time processing on parallel architectures. In this paper we focus on continuous preference queries, a representative class of continuous queries for decision making, and we propose a parallel query model targeting the efficient processing over out-of-order and bursty data streams. We study how to integrate punctuation mechanisms in order to enable out-of-order processing. Then, we present advanced scheduling strategies targeting scenarios with different burstiness levels, parameterized using the index of dispersion quantity. Extensive experiments have been performed using synthetic datasets and real-world data streams obtained from an existing real-time locating system. The experimental evaluation demonstrates the efficiency of our parallel solution and its effectiveness in handling the out-of-orderness degrees and burstiness levels of real-world applications.
2017
Mencagli, Gabriele; Torquati, Massimo; Danelutto, Marco; DE MATTEIS, Tiziano
File in questo prodotto:
File Dimensione Formato  
preprint-tpds-2017.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/847448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact