Sensorineural hearing loss, primed by dysfunction or death of hair cells in the cochlea, is the main cause of severe or profound deafness. Piezoelectric materials work similarly to hair cells, namely, as mechano-electrical transducers. Polyvinylidene fluoride (PVDF) films have demonstrated potential to replace the hair cell function, but the obtained piezoresponse was insufficient to stimulate effectively the auditory neurons. In this study, we reported on piezoelectric nanocomposites based on ultrafine PVDF fibers and barium titanate nanoparticles (BTNPs), as a strategy to improve the PVDF performance for this application. BTNP/PVDF fiber meshes were produced via rotating-disk electrospinning, up to 20/80 weight composition. The BTNP/PVDF fibers showed diameters ranging in 0.160-1.325 μm. Increasing collector velocity to 3000 rpm improved fiber alignment. The piezoelectric β phase of PVDF was well expressed following fabrication and the piezoelectric coefficients increased according to the BTNP weight ratio. The BTNP/PVDF fibers were not cytotoxic towards cochlear epithelial cells. Neural-like cells adhered to the composite fibers and, upon mechanical stimulation, showed enhanced viability. Using BTNP filler for PVDF matrices, in the form of aligned ultrafine fibers, increased the piezoresponse of PVDF transducers and favored neural cell contact. Piezoelectric nanostructured composites might find application in next generation cochlear implants.
Design, fabrication and characterization of composite piezoelectric ultrafine fibers for cochlear stimulation
Puppi, Dario;GALLONE, GIUSEPPE CARMINE;CHIELLINI, FEDERICA;BERRETTINI, STEFANO;BRUSCHINI, LUCAPenultimo
;DANTI, SERENA
Ultimo
2017-01-01
Abstract
Sensorineural hearing loss, primed by dysfunction or death of hair cells in the cochlea, is the main cause of severe or profound deafness. Piezoelectric materials work similarly to hair cells, namely, as mechano-electrical transducers. Polyvinylidene fluoride (PVDF) films have demonstrated potential to replace the hair cell function, but the obtained piezoresponse was insufficient to stimulate effectively the auditory neurons. In this study, we reported on piezoelectric nanocomposites based on ultrafine PVDF fibers and barium titanate nanoparticles (BTNPs), as a strategy to improve the PVDF performance for this application. BTNP/PVDF fiber meshes were produced via rotating-disk electrospinning, up to 20/80 weight composition. The BTNP/PVDF fibers showed diameters ranging in 0.160-1.325 μm. Increasing collector velocity to 3000 rpm improved fiber alignment. The piezoelectric β phase of PVDF was well expressed following fabrication and the piezoelectric coefficients increased according to the BTNP weight ratio. The BTNP/PVDF fibers were not cytotoxic towards cochlear epithelial cells. Neural-like cells adhered to the composite fibers and, upon mechanical stimulation, showed enhanced viability. Using BTNP filler for PVDF matrices, in the form of aligned ultrafine fibers, increased the piezoresponse of PVDF transducers and favored neural cell contact. Piezoelectric nanostructured composites might find application in next generation cochlear implants.File | Dimensione | Formato | |
---|---|---|---|
1. Materials&Design 2017.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
5.15 MB
Formato
Adobe PDF
|
5.15 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Manuscript_M&D_Danti_final.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.