Using contact surgery we define families of contact structures on certain Seifert fibered three-manifolds. We prove that all these contact structures are tight using contact Ozsath-Szabo invariants. We use these examples to show that, given a natural number n, there exists a Seifert fibered three-manifold carrying at least n pairwise non-isomorphic tight, not fillable contact structures.

Seifert fibered contact three-manifolds via surgery

LISCA, PAOLO;
2004-01-01

Abstract

Using contact surgery we define families of contact structures on certain Seifert fibered three-manifolds. We prove that all these contact structures are tight using contact Ozsath-Szabo invariants. We use these examples to show that, given a natural number n, there exists a Seifert fibered three-manifold carrying at least n pairwise non-isomorphic tight, not fillable contact structures.
2004
Lisca, Paolo; Stipsicz, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/85329
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact