The Mercury Orbiter Radio science Experiment (MORE) is one of the experiments on-board the ESA/JAXA BepiColombo mission to Mercury. A crucial goal of MORE is to determine the gravity field and rotational state of Mercury in order to enable a better understanding of the planet’s geophysics. The authors have recently reported on the results of a set of simulations of the MORE gravimetry and rotation experiments, carried out with the dedicated ORBIT14 software. Since that time, the launch date has been postponed twice, leading to a shift of more than one year in the orbital phase of the mission. Actually, the updated schedule results in a more suitable planetary configuration to determine the amplitude of the forced librations in longitude induced by Jupiter. In fact, the amplitude can be considerably enhanced due to a near-resonance with the free librations period, a key parameter to constrain the interior structure of Mercury. We show that the newest launch date allows the measurement of the long period librations amplitude forced by Jupiter with an accuracy of some tenth of arcseconds, a significant improvement with respect to the results with the previous mission schedule.

Determining the amplitude of Mercury’s long period librations with the BepiColombo radio science experiment

TOMMEI, GIACOMO;MILANI COMPARETTI, ANDREA
2017-01-01

Abstract

The Mercury Orbiter Radio science Experiment (MORE) is one of the experiments on-board the ESA/JAXA BepiColombo mission to Mercury. A crucial goal of MORE is to determine the gravity field and rotational state of Mercury in order to enable a better understanding of the planet’s geophysics. The authors have recently reported on the results of a set of simulations of the MORE gravimetry and rotation experiments, carried out with the dedicated ORBIT14 software. Since that time, the launch date has been postponed twice, leading to a shift of more than one year in the orbital phase of the mission. Actually, the updated schedule results in a more suitable planetary configuration to determine the amplitude of the forced librations in longitude induced by Jupiter. In fact, the amplitude can be considerably enhanced due to a near-resonance with the free librations period, a key parameter to constrain the interior structure of Mercury. We show that the newest launch date allows the measurement of the long period librations amplitude forced by Jupiter with an accuracy of some tenth of arcseconds, a significant improvement with respect to the results with the previous mission schedule.
2017
Giulia, Schettino; Stefano, Cicalò; Tommei, Giacomo; MILANI COMPARETTI, Andrea
File in questo prodotto:
File Dimensione Formato  
epjp1700534-BEPIlibration.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 289.96 kB
Formato Adobe PDF
289.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/853926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact