The engine and vehicle design in Formula SAE competition has to accomplish a strict regulation. In order to limit the maximum power, an air restrictor of 20mm of diameter is imposed in the intake line. To overcome the limitations caused by the restrictor, Firenze Race Team equipped its one-cylinder engine with a turbocharger, which is conventionally provided with a wastegate (WG) valve to limit the maximum boost pressure and avoid knocking phenomena. Typically, the WG valve is controlled by a pneumatic actuator, which opens the valve according to a defined and constant maximum boost pressure downstream the compressor in the whole engine operating range. Therefore, the boost pressure at high engine speed, in which knocking problems are less intense and the volumetric efficiency is lower, is limited by the threshold value defined at medium-low engine speeds, i.e. the pneumatic WG limits the maximum power that the engine can supply. In this study, the implementation of an electronic control system for the WG valve is described together with a dedicated control strategy aimed at providing the desired boost pressure at full load for each engine speed, in order to get the maximum power avoiding knocking phenomena. The electronic WG provided higher power values and a more extended torque curve in comparison to the conventional pneumatic one.

Optimization of the Performance of a Formula SAE Engine by Means of a Wastegate Valve Electronically Actuated

FERRARI, LORENZO;
2016-01-01

Abstract

The engine and vehicle design in Formula SAE competition has to accomplish a strict regulation. In order to limit the maximum power, an air restrictor of 20mm of diameter is imposed in the intake line. To overcome the limitations caused by the restrictor, Firenze Race Team equipped its one-cylinder engine with a turbocharger, which is conventionally provided with a wastegate (WG) valve to limit the maximum boost pressure and avoid knocking phenomena. Typically, the WG valve is controlled by a pneumatic actuator, which opens the valve according to a defined and constant maximum boost pressure downstream the compressor in the whole engine operating range. Therefore, the boost pressure at high engine speed, in which knocking problems are less intense and the volumetric efficiency is lower, is limited by the threshold value defined at medium-low engine speeds, i.e. the pneumatic WG limits the maximum power that the engine can supply. In this study, the implementation of an electronic control system for the WG valve is described together with a dedicated control strategy aimed at providing the desired boost pressure at full load for each engine speed, in order to get the maximum power avoiding knocking phenomena. The electronic WG provided higher power values and a more extended torque curve in comparison to the conventional pneumatic one.
2016
Romani, Luca; Vichi, Giovanni; Bianchini, Alessandro; Ferrari, Lorenzo; Ferrara, Giovanni
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/861107
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact