Rotating stall in centrifugal compressors not only adversely affects the performance before surge, but also can generate high subsynchronous vibrations, marking the minimum flow limit of a machine. Recent works presented an experimental approach to estimate the stall force induced by the unbalanced pressure field in a vaneless diffuser using dynamic pressure measurements. In this study, the results of a 3D-unsteady simulation of a radial stage model were used to estimate the stall force and to compare it with the approximation obtained with an "experimental-like" approach. Results showed that: A) the experimental approach, using an ensemble average approach for transposing data between time and space domains provides sufficiently accurate results; b) the momentum contribution, neglected in experiments, gives negligible contribution to the final intensity of the stall force.

Estimation of the Aerodynamic Force Induced by Vaneless Diffuser Rotating Stall in Centrifugal Compressor Stages

FERRARI, LORENZO;
2016-01-01

Abstract

Rotating stall in centrifugal compressors not only adversely affects the performance before surge, but also can generate high subsynchronous vibrations, marking the minimum flow limit of a machine. Recent works presented an experimental approach to estimate the stall force induced by the unbalanced pressure field in a vaneless diffuser using dynamic pressure measurements. In this study, the results of a 3D-unsteady simulation of a radial stage model were used to estimate the stall force and to compare it with the approximation obtained with an "experimental-like" approach. Results showed that: A) the experimental approach, using an ensemble average approach for transposing data between time and space domains provides sufficiently accurate results; b) the momentum contribution, neglected in experiments, gives negligible contribution to the final intensity of the stall force.
2016
Marconcini, Michele; Bianchini, Alessandro; Checcucci, Matteo; Biliotti, Davide; Giachi, Marco; Rubino, Dante Tommaso; Arnone, Andrea; Ferrari, Lorenzo; Ferrara, Giovanni
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/861109
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact