The problem to ensure safety of performant robot arms during task execution was previously investigated by authors in [1], [2]. The problem can be approached by studying an optimal control policy, the “Safe Brachistocrone”, whose solutions are joint impedance trajectories coordinated with desired joint velocities. Transmission stiffness is chosen so as to achieve minimum-time task execution for the robot, while guaranteeing an intrinsic safety level in case of an unexpected collision between a link of the arm and a human operator. In this paper we extend this approach to more general classes of robot actuation systems, whereby other impedance parameters beside stiffness (such as e.g. joint damping and/or plasticity) can vary. We report on a rather extensive experimental campaign validating the proposed approach.

Optimal Mechanical/Control Design for Safe and Fast Robotics

BICCHI, ANTONIO
2006-01-01

Abstract

The problem to ensure safety of performant robot arms during task execution was previously investigated by authors in [1], [2]. The problem can be approached by studying an optimal control policy, the “Safe Brachistocrone”, whose solutions are joint impedance trajectories coordinated with desired joint velocities. Transmission stiffness is chosen so as to achieve minimum-time task execution for the robot, while guaranteeing an intrinsic safety level in case of an unexpected collision between a link of the arm and a human operator. In this paper we extend this approach to more general classes of robot actuation systems, whereby other impedance parameters beside stiffness (such as e.g. joint damping and/or plasticity) can vary. We report on a rather extensive experimental campaign validating the proposed approach.
2006
G., Tonietti; R., Schiavi; Bicchi, Antonio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/86503
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact