We consider the weak solutions to the Euler-Fourier system describing the motion of a compressible heat conducting gas. Employing the method of convex integration, we show that the problem admits infinitely many global-in-time weak solutions for any choice of smooth initial data. We also show that for any initial distribution of the density and temperature, there exists an initial velocity such that the associated initial-value problem possesses infinitely many solutions that conserve the total energy.

On the weak solutions to the equations of a compressible heat conducting gas

CHIODAROLI, ELISABETTA;
2015-01-01

Abstract

We consider the weak solutions to the Euler-Fourier system describing the motion of a compressible heat conducting gas. Employing the method of convex integration, we show that the problem admits infinitely many global-in-time weak solutions for any choice of smooth initial data. We also show that for any initial distribution of the density and temperature, there exists an initial velocity such that the associated initial-value problem possesses infinitely many solutions that conserve the total energy.
2015
Chiodaroli, Elisabetta; Feireisl, Eduard; Kreml, Ondrej
File in questo prodotto:
File Dimensione Formato  
ontheweak.pdf

accesso aperto

Descrizione: Versione post-print
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 277.88 kB
Formato Adobe PDF
277.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/872802
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 30
social impact