Drought frequency is predicted to increase in future environments. Leaf water potential (ΨLW) is commonly used to evaluate plant water status, but traditional measurements can be logistically difficult and require destructive sampling. We used reflectance spectroscopy to characterize variation in ΨLW of Quercus oleoides Schltdl. & Cham. under differential water availability and tested the ability to predict pre-dawn ΨLW (PDΨLW) using spectral data collected hours after pressure chamber measurements on darkacclimated leaves. ΨLW was measured with a Scholander pressure chamber. Leaf reflectance was collected at one or both of two time points: immediately (ΨLW) and ~5 h after pressure chamber measurements (PDΨLW). Predictive models were constructed using partial least-squares regression. Model performance was evaluated using coefficient of determination (R2), root-meansquare error (RMSE), bias, and the percent RMSE of the data range (%RMSE). ΨLW and PDΨLW were well predicted using spectroscopic models and successfully estimated a wide variation in ΨLW (light- or dark-acclimated leaves) as well as PDΨLW (dark-acclimated leaves only). Mean ΨLW R2, RMSE and bias values were 0.65, 0.51 MPa and 0.09, respectively, with a %RMSE between 8% and 20%, while mean PDΨLW R2, RMSE and bias values were 0.60, 0.44 MPa and 0.01, respectively, with a %RMSE between 9% and 20%. Estimates of PDΨLW produced similar statistical outcomes when analyzing treatment effects on PDΨLW as those found using reference pressure chamber measurements. These findings highlight a promising approach to evaluate plant responses to environmental change by providing rapid measurements that can be used to estimate plant water status as well as demonstrating that spectroscopic measurements can be used as a surrogate for standard, reference measurements in a statistical framework.
Using foliar spectral properties to assess the effects of drought on plant water potential
COTROZZI, LORENZOPrimo
;PELLEGRINI, ELISA;NALI, CRISTINA;
2017-01-01
Abstract
Drought frequency is predicted to increase in future environments. Leaf water potential (ΨLW) is commonly used to evaluate plant water status, but traditional measurements can be logistically difficult and require destructive sampling. We used reflectance spectroscopy to characterize variation in ΨLW of Quercus oleoides Schltdl. & Cham. under differential water availability and tested the ability to predict pre-dawn ΨLW (PDΨLW) using spectral data collected hours after pressure chamber measurements on darkacclimated leaves. ΨLW was measured with a Scholander pressure chamber. Leaf reflectance was collected at one or both of two time points: immediately (ΨLW) and ~5 h after pressure chamber measurements (PDΨLW). Predictive models were constructed using partial least-squares regression. Model performance was evaluated using coefficient of determination (R2), root-meansquare error (RMSE), bias, and the percent RMSE of the data range (%RMSE). ΨLW and PDΨLW were well predicted using spectroscopic models and successfully estimated a wide variation in ΨLW (light- or dark-acclimated leaves) as well as PDΨLW (dark-acclimated leaves only). Mean ΨLW R2, RMSE and bias values were 0.65, 0.51 MPa and 0.09, respectively, with a %RMSE between 8% and 20%, while mean PDΨLW R2, RMSE and bias values were 0.60, 0.44 MPa and 0.01, respectively, with a %RMSE between 9% and 20%. Estimates of PDΨLW produced similar statistical outcomes when analyzing treatment effects on PDΨLW as those found using reference pressure chamber measurements. These findings highlight a promising approach to evaluate plant responses to environmental change by providing rapid measurements that can be used to estimate plant water status as well as demonstrating that spectroscopic measurements can be used as a surrogate for standard, reference measurements in a statistical framework.File | Dimensione | Formato | |
---|---|---|---|
Cotrozzi et al. 2017 TP.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
616.24 kB
Formato
Adobe PDF
|
616.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.