This work analyzes an approximate solution of the equations of motion for a spacecraft propelled by an Electric Solar Wind Sail with a fixed attitude. The peculiarity of such a propulsion system is that its thrust scales as the inverse heliocentric distance. This represents a substantial difference from a classical solar sail, whose propelling force is known to be proportional to inverse square distance from the Sun. Assuming a heliocentric, two-dimensional mission scenario, the polar form of the spacecraft trajectory equation is obtained for a closed parking orbit of given characteristics by means of an asymptotic expansion procedure. The proposed approach significantly improves the existing results as presented in the literature. A suitable choice of propulsion system parameters and parking orbit characteristics provides interesting similarities with recent solutions obtained for a solar sail-based spacecraft in a heliocentric, two-dimensional, mission scenario.

Two-dimensional Heliocentric Dynamics Approximation of an Electric Sail with Fixed Attitude

NICCOLAI, LORENZO
Primo
Software
;
QUARTA, ALESSANDRO ANTONIO
Secondo
Conceptualization
;
MENGALI, GIOVANNI
Ultimo
Writing – Review & Editing
2017-01-01

Abstract

This work analyzes an approximate solution of the equations of motion for a spacecraft propelled by an Electric Solar Wind Sail with a fixed attitude. The peculiarity of such a propulsion system is that its thrust scales as the inverse heliocentric distance. This represents a substantial difference from a classical solar sail, whose propelling force is known to be proportional to inverse square distance from the Sun. Assuming a heliocentric, two-dimensional mission scenario, the polar form of the spacecraft trajectory equation is obtained for a closed parking orbit of given characteristics by means of an asymptotic expansion procedure. The proposed approach significantly improves the existing results as presented in the literature. A suitable choice of propulsion system parameters and parking orbit characteristics provides interesting similarities with recent solutions obtained for a solar sail-based spacecraft in a heliocentric, two-dimensional, mission scenario.
2017
Niccolai, Lorenzo; Quarta, ALESSANDRO ANTONIO; Mengali, Giovanni
File in questo prodotto:
File Dimensione Formato  
AESCTE_71_2017.pdf

solo utenti autorizzati

Descrizione: Versione finale.
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
[2017] Two-dimensional heliocentric dynamics approximation of an electric sail with fixed attitude.pdf

accesso aperto

Descrizione: Versione finale identica in tutto a quella pubblicata fuorché nell’impaginazione editoriale.
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/874907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 20
social impact