Using suitable modified energies, we study higher-order Sobolev norms' growth in time for the nonlinear Schrödinger equation (NLS) on a generic 2- or 3-dimensional compact manifold. In two dimensions, we extend earlier results that dealt only with cubic nonlinearities, and get polynomial-in-time bounds for any higher-order nonlinearities. In three dimensions, we prove that solutions to the cubic NLS grow at most exponentially, while for the subcubic NLS we get polynomial bounds on the growth of the H2 norm.
On the growth of Sobolev norms for NLS on 2- and 3-dimensional manifolds
VISCIGLIA, NICOLA
2017-01-01
Abstract
Using suitable modified energies, we study higher-order Sobolev norms' growth in time for the nonlinear Schrödinger equation (NLS) on a generic 2- or 3-dimensional compact manifold. In two dimensions, we extend earlier results that dealt only with cubic nonlinearities, and get polynomial-in-time bounds for any higher-order nonlinearities. In three dimensions, we prove that solutions to the cubic NLS grow at most exponentially, while for the subcubic NLS we get polynomial bounds on the growth of the H2 norm.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
APDE-PTV.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
596.03 kB
Formato
Adobe PDF
|
596.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1607.08903.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
287.15 kB
Formato
Adobe PDF
|
287.15 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.