Current prosthetic hands are frequently rejected in part due to limited functionality and versatility. We assessed the feasibility of a novel prosthetic hand, the SoftHand Pro (SHP), whose design combines soft robotics and hand postural synergies. Able-bodied subjects ( ) tracked cursor motion by opening and closing the SHP and performed a grasp-lift-hold-release (GLHR) task with a sensorized cylindrical object of variable weight. The SHP control was driven by electromyographic (EMG) signals from two antagonistic muscles. Although the time to perform the GLHR task was longer for the SHP than native hand for the first few trials (10.2 ± 1.4 s and 2.13 ± 0.09 s, respectively), performance was much faster on subsequent trials (~5 s). The SHP steady-state grip force was significantly modulated as a function of object weight ( ). For the native hand, however, peak and steady-state grip forces were modulated to a greater extent (+68% and +91%, respectively). These changes were mediated by the modulation of EMG amplitude and co-contraction. These data suggest that the SHP has a promise for prosthetic applications and point-to-design modifications that could improve the SHP.

Grasp Performance of a Soft Synergy-Based Prosthetic Hand: A Pilot Study

Godfrey, Sasha BLUE;BICCHI, ANTONIO
;
SANTELLO, MARCO
2017-01-01

Abstract

Current prosthetic hands are frequently rejected in part due to limited functionality and versatility. We assessed the feasibility of a novel prosthetic hand, the SoftHand Pro (SHP), whose design combines soft robotics and hand postural synergies. Able-bodied subjects ( ) tracked cursor motion by opening and closing the SHP and performed a grasp-lift-hold-release (GLHR) task with a sensorized cylindrical object of variable weight. The SHP control was driven by electromyographic (EMG) signals from two antagonistic muscles. Although the time to perform the GLHR task was longer for the SHP than native hand for the first few trials (10.2 ± 1.4 s and 2.13 ± 0.09 s, respectively), performance was much faster on subsequent trials (~5 s). The SHP steady-state grip force was significantly modulated as a function of object weight ( ). For the native hand, however, peak and steady-state grip forces were modulated to a greater extent (+68% and +91%, respectively). These changes were mediated by the modulation of EMG amplitude and co-contraction. These data suggest that the SHP has a promise for prosthetic applications and point-to-design modifications that could improve the SHP.
2017
Gailey, Alycia; Godfrey, Sasha BLUE; Breighner, Ryan; Andrews, Karen; Zhao, Kristin; Bicchi, Antonio; Santello, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/876367
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact