Chemical algorithms are statistical control algorithms described and represented as chemical reaction networks. They are analytically tractable, they reinforce a deterministic state-to-dynamics relation, they have configurable stability properties, and they are directly implemented in state space using a high-level visual representation. These properties make them attractive solutions for traffic shaping and generally the control of dynamics in computer networks. In this paper, we present a framework for deploying chemical algorithms on field programmable gate arrays. Besides substantial computational acceleration, we introduce a low-overhead approach for hardware-level programmability and re-configurability of these algorithms at runtime, and without service interruption. We believe that this is a promising approach for expanding the control-plane programmability of software defined networks (SDN), to enable programmable network dynamics. To this end, the simple high-level abstractions of chemical algorithms offer an ideal northbound interface to the hardware, aligned with other programming primitives of SDN (e.g., flow rules).
On hardware programmable network dynamics with a chemistry-inspired abstraction
LUISE, MARCO
2017-01-01
Abstract
Chemical algorithms are statistical control algorithms described and represented as chemical reaction networks. They are analytically tractable, they reinforce a deterministic state-to-dynamics relation, they have configurable stability properties, and they are directly implemented in state space using a high-level visual representation. These properties make them attractive solutions for traffic shaping and generally the control of dynamics in computer networks. In this paper, we present a framework for deploying chemical algorithms on field programmable gate arrays. Besides substantial computational acceleration, we introduce a low-overhead approach for hardware-level programmability and re-configurability of these algorithms at runtime, and without service interruption. We believe that this is a promising approach for expanding the control-plane programmability of software defined networks (SDN), to enable programmable network dynamics. To this end, the simple high-level abstractions of chemical algorithms offer an ideal northbound interface to the hardware, aligned with other programming primitives of SDN (e.g., flow rules).File | Dimensione | Formato | |
---|---|---|---|
Chemistry.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.97 MB
Formato
Adobe PDF
|
2.97 MB | Adobe PDF | Visualizza/Apri |
HW programmable.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.