Online battery parameter identification algorithms, such as the Moving Window Least Squares, allow model-based state estimators with low computational intensity to be very accurate. This paper presents a procedure for tuning the algorithm parameters by using application-specific current profiles. A gardening application is taken as a case study. The results prove the validity of the proposed procedure and allow us to assess the identification algorithm performance.

Tuning of Moving Window Least Squares-based algorithm for online battery parameter estimation

Morello, R.;Di Rienzo, R.;Roncella, R.;Saletti, R.;Baronti, F.
2017-01-01

Abstract

Online battery parameter identification algorithms, such as the Moving Window Least Squares, allow model-based state estimators with low computational intensity to be very accurate. This paper presents a procedure for tuning the algorithm parameters by using application-specific current profiles. A gardening application is taken as a case study. The results prove the validity of the proposed procedure and allow us to assess the identification algorithm performance.
2017
9781509050529
File in questo prodotto:
File Dimensione Formato  
paper_approved.pdf

accesso aperto

Descrizione: Versione finale prima dell'editing dell'editore
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/880847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact