Online battery parameter identification algorithms, such as the Moving Window Least Squares, allow model-based state estimators with low computational intensity to be very accurate. This paper presents a procedure for tuning the algorithm parameters by using application-specific current profiles. A gardening application is taken as a case study. The results prove the validity of the proposed procedure and allow us to assess the identification algorithm performance.
Tuning of Moving Window Least Squares-based algorithm for online battery parameter estimation
Morello, R.;Di Rienzo, R.;Roncella, R.;Saletti, R.;Baronti, F.
2017-01-01
Abstract
Online battery parameter identification algorithms, such as the Moving Window Least Squares, allow model-based state estimators with low computational intensity to be very accurate. This paper presents a procedure for tuning the algorithm parameters by using application-specific current profiles. A gardening application is taken as a case study. The results prove the validity of the proposed procedure and allow us to assess the identification algorithm performance.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
paper_approved.pdf
accesso aperto
Descrizione: Versione finale prima dell'editing dell'editore
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.