The present paper is focused on the CFD pre-test analysis and design of the new experimental facility Blocked Fuel Pin bundle Simulator (BFPS) that will be installed into the NACIE-UP (NAtural CIrculation Experiment-UPgrade) facility located at the ENEA Brasimone Research Center (Italy). The BFPS test section will carry out suitable experiments to fully investigate different flow blockage regimes in a 19 fuel pin bundle providing experimental data in support of the development of the ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator) LFR DEMO. The geometrical domain of the fuel pin bundle simulator was designed to reproduce the geometrical features of ALFRED, e.g. the external wrapper in the active region and the spacer grids. Pre-tests calculations were carried out by applying accurate boundary conditions; the conjugate heat transfer in the clad is also considered. The blockages investigated are internal blockages of different extensions and in different locations: central sub-channel blockage, corner sub-channel blockage, edge sub-channel blockage, one sector blockage, and two-sector blockage. RANS simulations were carried out adopting the ANSYS CFX commercial code with the laminar sublayer resolved by the mesh resolution. The loci of the peak temperatures and their width as predicted by the CFD simulations are used for determining the location of the pin bundle instrumentation. The CFD pre-test analysis allowed also investigating the temperature distribution in the clad to operate the test section safely.

Pre-test CFD simulations of the NACIE-UP BFPS test section

Marinari, R.
Writing – Review & Editing
;
Forgione, N.
Writing – Review & Editing
;
2017-01-01

Abstract

The present paper is focused on the CFD pre-test analysis and design of the new experimental facility Blocked Fuel Pin bundle Simulator (BFPS) that will be installed into the NACIE-UP (NAtural CIrculation Experiment-UPgrade) facility located at the ENEA Brasimone Research Center (Italy). The BFPS test section will carry out suitable experiments to fully investigate different flow blockage regimes in a 19 fuel pin bundle providing experimental data in support of the development of the ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator) LFR DEMO. The geometrical domain of the fuel pin bundle simulator was designed to reproduce the geometrical features of ALFRED, e.g. the external wrapper in the active region and the spacer grids. Pre-tests calculations were carried out by applying accurate boundary conditions; the conjugate heat transfer in the clad is also considered. The blockages investigated are internal blockages of different extensions and in different locations: central sub-channel blockage, corner sub-channel blockage, edge sub-channel blockage, one sector blockage, and two-sector blockage. RANS simulations were carried out adopting the ANSYS CFX commercial code with the laminar sublayer resolved by the mesh resolution. The loci of the peak temperatures and their width as predicted by the CFD simulations are used for determining the location of the pin bundle instrumentation. The CFD pre-test analysis allowed also investigating the temperature distribution in the clad to operate the test section safely.
2017
Marinari, R.; Di Piazza, I.; Forgione, N.; Magugliani, F.
File in questo prodotto:
File Dimensione Formato  
Manuscript Pre-test CFD simulations of the NACIE-UP BFPS test section.pdf

Open Access dal 01/01/2020

Descrizione: Articolo principale, studio numerico del flow blockage di interesse per il reattore nucleare ALFRED
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 3 MB
Formato Adobe PDF
3 MB Adobe PDF Visualizza/Apri
ANE_2017_BFPS pre-tests simulations.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/885390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact