We consider a discrete model of a graphene sheet with atomic interactions governed by a harmonic approximation of the 2nd-generation Brenner potential that depends on bond lengths, bond angles, and two types of dihedral angles. A continuum limit is then deduced that fully describes the bending behavior. In particular, we deduce for the first time an analytical expression of the Gaussian stiffness, a scarcely investigated parameter ruling the rippling of graphene, for which contradictory values have been proposed in the literature. We disclose the atomic-scale sources of both bending and Gaussian stiffnesses and provide for them quantitative evaluations.

The Gaussian stiffness of graphene deduced from a continuum model based on Molecular Dynamics potentials

Paroni, Roberto
2017-01-01

Abstract

We consider a discrete model of a graphene sheet with atomic interactions governed by a harmonic approximation of the 2nd-generation Brenner potential that depends on bond lengths, bond angles, and two types of dihedral angles. A continuum limit is then deduced that fully describes the bending behavior. In particular, we deduce for the first time an analytical expression of the Gaussian stiffness, a scarcely investigated parameter ruling the rippling of graphene, for which contradictory values have been proposed in the literature. We disclose the atomic-scale sources of both bending and Gaussian stiffnesses and provide for them quantitative evaluations.
2017
Davini, Cesare; Favata, Antonino; Paroni, Roberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/885720
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact