We first consider an elastic thin heterogeneous cylinder of radius of order ε: the interior of the cylinder is occupied by a stiff material (fiber) that is surrounded by a soft material (matrix). By assuming that the elasticity tensor of the fiber does not scale with ε and that of the matrix scales with ε2, we prove that the one dimensional model is a nonlocal system.We then consider a reference configuration domain filled out by periodically distributed rods similar to those described above. We prove that the homogenized model is a second order nonlocal problem.In particular, we show that the homogenization problem is directly connected to the 3D-1D dimensional reduction problem.

Non-local effects by homogenization or 3D-1D dimension reduction in elastic materials reinforced by stiff fibers

Paroni, Roberto;
2016-01-01

Abstract

We first consider an elastic thin heterogeneous cylinder of radius of order ε: the interior of the cylinder is occupied by a stiff material (fiber) that is surrounded by a soft material (matrix). By assuming that the elasticity tensor of the fiber does not scale with ε and that of the matrix scales with ε2, we prove that the one dimensional model is a nonlocal system.We then consider a reference configuration domain filled out by periodically distributed rods similar to those described above. We prove that the homogenized model is a second order nonlocal problem.In particular, we show that the homogenization problem is directly connected to the 3D-1D dimensional reduction problem.
2016
Paroni, Roberto; Sili, Ali
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/885730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact