We consider a cylinder Ω ε having fixed length and small cross-section εω with ω⊂R2. Let 1/K ε be the Korn constant of Ω ε. We show that, as ε tends to zero, K ε/ε 2 converges to a positive constant. We provide a characterization of this constant in terms of certain parameters that depend on ω.

Asymptotically exact Korn's constant for thin cylindrical domains

Paroni, Roberto;
2012-01-01

Abstract

We consider a cylinder Ω ε having fixed length and small cross-section εω with ω⊂R2. Let 1/K ε be the Korn constant of Ω ε. We show that, as ε tends to zero, K ε/ε 2 converges to a positive constant. We provide a characterization of this constant in terms of certain parameters that depend on ω.
2012
Paroni, Roberto; Tomassetti, Giuseppe
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/885763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact