Herein we derive an expression for direct determination of the geometric autocorrelation function W of a polycrystalline material from images of its grain boundary network (e.g., those delivered by orientation imaging microscopy). We also obtain an identity that relates the mean linear intercept function to a directional derivative of the geometric autocorrelation function. These formulae were applied to examine whether a widely-used formula for W, particularly in theoretical studies of attenuation of elastic waves in polycrystalline media, would be valid for the grain boundary structure of a commercial aluminum alloy. The conclusion was negative. © 2005 Elsevier B.V. All rights reserved.
On the geometric autocorrelation function of polycrystalline materials
Paroni, Roberto;
2006-01-01
Abstract
Herein we derive an expression for direct determination of the geometric autocorrelation function W of a polycrystalline material from images of its grain boundary network (e.g., those delivered by orientation imaging microscopy). We also obtain an identity that relates the mean linear intercept function to a directional derivative of the geometric autocorrelation function. These formulae were applied to examine whether a widely-used formula for W, particularly in theoretical studies of attenuation of elastic waves in polycrystalline media, would be valid for the grain boundary structure of a commercial aluminum alloy. The conclusion was negative. © 2005 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.