We show that for a large class of measurable vector fields in the sense of N. Weaver (i.e. derivations over the algebra of Lipschitz functions), the notion of a flow of the given positive Borel measure similar to the classical one generated by a smooth vector field (in a space with smooth structure) may be defined in a reasonable way, so that the measure flows along'' the appropriately understood integral curves of the given vector field and the classical continuity equation is satisfied in the weak sense.

Flows of measures generated by vector fields

Emanuele Paolini
Co-primo
;
2018-01-01

Abstract

We show that for a large class of measurable vector fields in the sense of N. Weaver (i.e. derivations over the algebra of Lipschitz functions), the notion of a flow of the given positive Borel measure similar to the classical one generated by a smooth vector field (in a space with smooth structure) may be defined in a reasonable way, so that the measure flows along'' the appropriately understood integral curves of the given vector field and the classical continuity equation is satisfied in the weak sense.
2018
Paolini, Emanuele; Stepanov, Eugene
File in questo prodotto:
File Dimensione Formato  
paoste13-flow1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 354.11 kB
Formato Adobe PDF
354.11 kB Adobe PDF Visualizza/Apri
Published.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 494.6 kB
Formato Adobe PDF
494.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/890192
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact