We study the renormalized energy-momentum tensor of gravitons in a de Sitter space-time. After canonically quantizing only the physical degrees of freedom, we adopt the standard adiabatic subtraction used for massless minimally coupled scalar fields as a regularization procedure and find that the energy density of gravitons in the E(3) invariant vacuum is proportional to H^4, where H is the Hubble parameter, but with a positive sign. According to this result the scalar expansion rate, which is gauge invariant in de Sitter space-time, is increased by the fluctuations. This implies that gravitons may then add to conformally coupled matter in driving the Starobinsky model of inflation.

Adiabatic regularization of the graviton stress-energy tensor in de Sitter space-time

MAROZZI, GIOVANNI
2005-01-01

Abstract

We study the renormalized energy-momentum tensor of gravitons in a de Sitter space-time. After canonically quantizing only the physical degrees of freedom, we adopt the standard adiabatic subtraction used for massless minimally coupled scalar fields as a regularization procedure and find that the energy density of gravitons in the E(3) invariant vacuum is proportional to H^4, where H is the Hubble parameter, but with a positive sign. According to this result the scalar expansion rate, which is gauge invariant in de Sitter space-time, is increased by the fluctuations. This implies that gravitons may then add to conformally coupled matter in driving the Starobinsky model of inflation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/890983
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 35
social impact