This paper presents the implementation of robust control strategies to augment an identified state-space model of a civil light helicopter. The aim of this study is to augment the helicopter model to achieve response types and handling qualities of a new category of aircraft called personal aerial vehicles, which can be flown even by inexperienced pilots. Two control methods are considered to augment the helicopter model, H∞and μ synthesis. Differences, advantages, and limitations of the implemented control architectures are highlighted with respect to the personal aerial vehicle reference dynamics in terms of robust stability, nominal performance, and handling qualities. Furthermore, results are presented of an experiment performed with the Max Planck Institute CyberMotion Simulator. The aim of the experiment is to assess the discrepancies between the two augmented systems and the personal aerial vehicle reference model. The experiment consists of piloted closed-loop control tasks performed by participants without any prior flight experience. The results show that the two implemented augmented systems allow inexperienced pilots to achieve workload and performance levels comparable to those defined for personal aerial vehicles.

Transforming civil helicopters into personal aerial vehicles: Modeling, control, and validation

Pollini, Lorenzo
2017-01-01

Abstract

This paper presents the implementation of robust control strategies to augment an identified state-space model of a civil light helicopter. The aim of this study is to augment the helicopter model to achieve response types and handling qualities of a new category of aircraft called personal aerial vehicles, which can be flown even by inexperienced pilots. Two control methods are considered to augment the helicopter model, H∞and μ synthesis. Differences, advantages, and limitations of the implemented control architectures are highlighted with respect to the personal aerial vehicle reference dynamics in terms of robust stability, nominal performance, and handling qualities. Furthermore, results are presented of an experiment performed with the Max Planck Institute CyberMotion Simulator. The aim of the experiment is to assess the discrepancies between the two augmented systems and the personal aerial vehicle reference model. The experiment consists of piloted closed-loop control tasks performed by participants without any prior flight experience. The results show that the two implemented augmented systems allow inexperienced pilots to achieve workload and performance levels comparable to those defined for personal aerial vehicles.
2017
Geluardi, Stefano; Venrooij, Joost; Olivari, Mario; Bã¼lthoff, Heinrich H.; Pollini, Lorenzo
File in questo prodotto:
File Dimensione Formato  
Transforming civil helicopters-pre_con_correzioni.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.94 MB
Formato Adobe PDF
5.94 MB Adobe PDF Visualizza/Apri
Transforming civil helicopters-editorial.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/891490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 5
social impact