We prove convergence in probability for particular sequences defined in terms of the digits appearing in Oppenheim Series expansions and Oppenheim Continued Fractions expansions of real numbers. Our results are obtained by first proving a general theorem (Theorem 2.2) having both kinds of expansion as particular cases.

Convergence results for Oppenheim expansions

Rita Giuliano
2017-01-01

Abstract

We prove convergence in probability for particular sequences defined in terms of the digits appearing in Oppenheim Series expansions and Oppenheim Continued Fractions expansions of real numbers. Our results are obtained by first proving a general theorem (Theorem 2.2) having both kinds of expansion as particular cases.
2017
Giuliano, Rita
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/892772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact