We integrate evidence from surface faults, geodetic measurements, local seismicity, and 3D numerical modelling of the subaerial Afar continental rift to show that an oceanic-style transform fault is forming during the final stages of continental breakup. Transform faults are a fundamental tenet of plate tectonics, connecting offset extensional segments of mid-ocean ridges, and are vital in palaeotectonic reconstructions of passive margins. The current consensus is that transform faults initiate after the onset of seafloor spreading. However this inference has been difficult to test given the lack of observations of transform fault formation. We present the first direct observation of transform fault initiation, and shed unprecedented light on their formation mechanisms. We demonstrate that they originate during late-stage continental rifting, earlier in the rifting cycle than previously thought. Our results have important implications for reconstructing the breakup history of the continents. Palaeotectonic reconstructions that use transform fault terminations as an indicator of the continent-ocean boundary may have placed the continent-ocean boundary landward of its true location. This will have led to an overestimation of the age of continental breakup of between 8-18 Myr. Our results therefore have significant implications for studies that rely on accurate dating of continental breakup events.

Formation of an Oceanic Transform Fault During Continental Rifting

Carolina Pagli;
2017-01-01

Abstract

We integrate evidence from surface faults, geodetic measurements, local seismicity, and 3D numerical modelling of the subaerial Afar continental rift to show that an oceanic-style transform fault is forming during the final stages of continental breakup. Transform faults are a fundamental tenet of plate tectonics, connecting offset extensional segments of mid-ocean ridges, and are vital in palaeotectonic reconstructions of passive margins. The current consensus is that transform faults initiate after the onset of seafloor spreading. However this inference has been difficult to test given the lack of observations of transform fault formation. We present the first direct observation of transform fault initiation, and shed unprecedented light on their formation mechanisms. We demonstrate that they originate during late-stage continental rifting, earlier in the rifting cycle than previously thought. Our results have important implications for reconstructing the breakup history of the continents. Palaeotectonic reconstructions that use transform fault terminations as an indicator of the continent-ocean boundary may have placed the continent-ocean boundary landward of its true location. This will have led to an overestimation of the age of continental breakup of between 8-18 Myr. Our results therefore have significant implications for studies that rely on accurate dating of continental breakup events.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/898434
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact