We use a magnetometer probe based on the Zeeman shift of the rubidium resonant optical transition to explore the atomic magnetic response for a wide range of field values. We record optical spectra for fields from a few tesla up to 60 T, the limit of the coil producing the magnetic field. The atomic absorption is detected by the fluorescence emissions from a very small region with a submillimeter size. We investigate a wide range of magnetic interactions from the hyperfine Paschen-Back regime to the fine one and the transitions between them. The magnetic field measurement is based on the rubidium absorption itself. The rubidium spectroscopic constants were previously measured with high precision, except the excited state Landé g-factor that we derive from the position of the absorption lines in the transition to the fine Paschen-Back regime. Our spectroscopic investigation, even if limited by the Doppler broadening of the absorption lines, measures the field with a 20 ppm uncertainty at the explored high magnetic fields. Its accuracy is limited to 75 ppm by the excited state Landé g-factor determination.

Optical spectroscopy of a microsized Rb vapor sample in magnetic fields up to 58 T

Ciampini, D.
Primo
;
Arimondo, E.
Ultimo
2017-01-01

Abstract

We use a magnetometer probe based on the Zeeman shift of the rubidium resonant optical transition to explore the atomic magnetic response for a wide range of field values. We record optical spectra for fields from a few tesla up to 60 T, the limit of the coil producing the magnetic field. The atomic absorption is detected by the fluorescence emissions from a very small region with a submillimeter size. We investigate a wide range of magnetic interactions from the hyperfine Paschen-Back regime to the fine one and the transitions between them. The magnetic field measurement is based on the rubidium absorption itself. The rubidium spectroscopic constants were previously measured with high precision, except the excited state Landé g-factor that we derive from the position of the absorption lines in the transition to the fine Paschen-Back regime. Our spectroscopic investigation, even if limited by the Doppler broadening of the absorption lines, measures the field with a 20 ppm uncertainty at the explored high magnetic fields. Its accuracy is limited to 75 ppm by the excited state Landé g-factor determination.
2017
Ciampini, D.; Battesti, R.; Rizzo, C.; Arimondo, E.
File in questo prodotto:
File Dimensione Formato  
A_071_arxiv.pdf

accesso aperto

Descrizione: arxiv
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 481.97 kB
Formato Adobe PDF
481.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/903460
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact