We prove asymptotic results for 2-dimensional random matching problems. In particular, we obtain the leading term in the asymptotic expansion of the expected quadratic transportation cost for empirical measures of two samples of independent uniform random variables in the square. Our technique is based on a rigorous formulation of the challenging PDE ansatz by Caracciolo et al. (Phys Rev E 90:012118, 2014) that linearizes the Monge–Ampère equation.

A PDE approach to a 2-dimensional matching problem

Ambrosio, Luigi
;
Stra, Federico;Trevisan, Dario
2018-01-01

Abstract

We prove asymptotic results for 2-dimensional random matching problems. In particular, we obtain the leading term in the asymptotic expansion of the expected quadratic transportation cost for empirical measures of two samples of independent uniform random variables in the square. Our technique is based on a rigorous formulation of the challenging PDE ansatz by Caracciolo et al. (Phys Rev E 90:012118, 2014) that linearizes the Monge–Ampère equation.
2018
Ambrosio, Luigi; Stra, Federico; Trevisan, Dario
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/908501
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 54
social impact